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ABSTRACT

How canwe automatically repair semantic bugs in string-processing

programs? A semantic bug is an unexpected program state: The

program does not crash (which can be easily detected). Instead,

the program processes the input incorrectly. It produces an output

which users identify as unexpected. We envision a fully automated

debugging process for semantic bugs where a user reports the un-

expected behavior for a given input and the machine negotiates the

condition under which the program fails. During the negotiation,

the machine learns to predict the user’s response and in this process

learns an automated oracle for semantic bugs.

In this paper, we introduce Grammar2Fix, an automated oracle

learning and debugging technique for string-processing programs

even when the input format is unknown. Grammar2Fix represents

the oracle as a regular grammar which is iteratively improved by

systematic queries to the user for other inputs that are likely failing.

Grammar2Fix implements several heuristics tomaximize the oracle

quality under a minimal query budget. In our experiments with 3

widely-used repair benchmark sets, Grammar2Fix predicts passing

inputs as passing and failing inputs as failing with more than 96%

precision and recall, using a median of 42 queries to the user.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.
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1 INTRODUCTION

The recent hype around Github Co-pilot shows:Developers are striv-

ing for the automation of mundane software development tasks

in order to focus on the more creative aspects of programming. A

recent study [25] on developer trust for automated program repair

(APR) revealed that the majority of developers (72%) would review

auto-generated patches. The most-widely used APR tools are test-

suite-driven [16, 21, 23, 27, 28]. In their seminal work introducing

GenProg [16], Le Goues et al. cast the APR problem as an optimiza-

tion problem: Given a program 𝑃 and a failing test suite 𝑇 , find a

version of 𝑃 that maximizes the number of passing test cases in 𝑇 .

Nguyen et al. [23] cast the APR problem as a constraint satisfaction

problem where the pertinent part of the program is encoded as a

constraint, a culprit statement is identified, and finally fixed using

constraint-based program synthesis. However, in practice there

is often only a single user-provided failing test input instead of a

full-fledged test suite. How can we facilitate the automated repair

of semantic bugs with a single failing test input where only the

users can really tell whether an input was processed correctly?

Recently, Böhme, Geethal, and Pham [6] proposed a framework

within which the machine, by systematic queries to the user, would

learn an SMT(Linear Real Arithmetic(LRA))-constraint under which

a number-processing program fails. All inputs that satisfy this nu-

merical constraint over inequalities are predicted as failing. How-

ever, the proposed framework is fundamentally limited to number-

processing programs and builds on recent advances in learning

for numerical constraints [13]. The problem of learning automated

oracles for other types of input remains open.

In this paper, we investigate the problem of learning an automatic

oracle for string-processing programs. Unlike numeric inputs, string

inputs often follow a certain structure or format. This structure is

often represented by a grammar. While we are excited about recent

advances in solving string constraints [34], we are not aware of

automated learners of string constraints. Instead, we explore tech-

niques from automated grammar learning to negotiate the failure

condition for string-processing programsÐeven when the original

input grammar is unknown. We develop several heuristics, e.g.,

based on input minimization, to maximize the prediction accuracy

of the grammar-based bug oracle given only a limited query bud-

get. Our experiments demonstrate that Grammar2Fix can learn

grammar-based oracles with over 90% accuracy, using about 40

queries, with these heuristics.

Discovering the failure condition through a single failing string

input is a challenging task. For a single failing input, there could

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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be multiple reasonable explanations for why it fails. Let’s take a

simplified example. The input nnn might fail (i) because it con-

tains exactly three characters, (ii) because it starts with the letter

n, (iii) because it contains only the letter n but no other letter, or

(iv) another reason. We observe (1) that these failure conditions are

indistinguishable without further failing inputs (e.g., nil also fails)

and (2) that the size of the string-processing program is insubstantial

when describing (or representing) the failure condition.

Grammar2Fix builds on techniques from automated grammar

inference [19]. However, before we could apply existing grammar

inference techniques to our task we had to overcome several chal-

lenges. Regular Positive and Negative Inference (RPNI) [8], the

GOLD algorithm [10] and 𝐿∗ [3] are some regular grammar infer-

ence techniques while Inductive CYK [22] is a popular context-free

grammar inference technique. All these algorithms work under a

finite alphabet that should be predetermined. In addition, as the

alphabet gets larger, the number of examples required for accurate

grammar inference significantly increases. Similarly, many queries

have to be sent to the oracle in active grammar inference algorithms

(e.g. 𝐿∗). The grammar representing the failure condition can be

inferred from failing inputs; however, we cannot expect that fail-

ing inputs have a small alphabet in most cases. Therefore, under

these algorithms, many training examples (failing inputs) would

be required to infer a grammar for a failure condition, which is a

significant limitation of these techniques.

In this paper, we present an active grammar inference approach

and effective heuristics to infer a general condition by queries to

the user that a string input should satisfy to expose an erroneous

program execution.

The inference process begins with one failing input of the bug.

First, Grammar2Fix finds the smallest failing input. The user-

provided failing input can have components (character sequences)

not contributing to the failure. Removing such components helps

to identify the actual cause of the failure. Grammar2Fix applies a

test case minimization algorithm [33] to the given failing input to

remove the components not contributing to the failure and to trace

the minimal input reproducing the failure from the given failing

input. The one-minimal failing input cannot be divided further to

have more failing inputs [33]. As a by-product of the minimization,

the test case minimization procedure generates some additional

passing and failing inputs.

Second, from the minimized input and the test inputs generated

during minimization, Grammar2Fix constructs a first draft of the

failure condition, called basic level grammar. The basic level gram-

mar is a grammar that accepts all the failing inputs and rejects all

the passing inputs obtained during minimization. To construct it,

we apply Regular Positive and Negative Inference (RPNI) [8] with

a slight modification to its merging algorithm. This results in a

Deterministic Finite Automata (DFA) [14] that describes how the

minimal failing input should be positioned in the failing inputs

obtained during test case minimization. This DFA represents the

basic level grammar.

Third, Grammar2Fix generalizes the basic level grammar to

accept more failing inputs. The basic level grammar can be over-

fitting with the training examples. Thus, Grammar2Fix applies

Mutational Fuzzing [7] on the initial failing inputs to generate more

failing inputs. For each newly generated failing input, we apply

the first three steps of the algorithm, develop a new grammar, and

combine it with the previous grammar. At the end of the process,

Grammar2Fix returns a collection of DFAs connected via disjunc-

tion that together represent the generalized failure condition of the

buggy program.

Grammar2Fix generates new test inputs in failure grammar

inference which are then labelled by the user. Concretely, when

requested, the user labels a generated input provided together with

the corresponding actual output as passing or failing. The objective

of our failure grammar inference is to learn to predict accurately

the label that a user would assign to a test input. The labelled test

inputs are used to create the repair test suite to be used with an

automated program repair tool.

We conducted several experiments using 329 program subjects,

containing bugs of varying complexity, from three (3) widely-used

program repair benchmark sets. Our results demonstrate that

(1) Grammar2Fix induces high-quality automated oracles. For the

majority of bugs, the learned oracle identifies failing test inputs

with more than 97% precision and recall.

(2) Each heuristic step in Grammar2Fix improves the quality of

the learned oracle. The proportion of correctly identified failing

inputs increases from <20% for the first step to 97% for the last.

(3) For the majority of bugs, a human would need to answer at

most 42 "Yes/No" questions about the correct processing of

string inputs (i.e., less than 3 minutes assuming 4 seconds per

question). Given that bugs in stable real-world systems are quite

rare and that the query load can otherwise be distributed, we

believe that this human effort is reasonable.

(4) Grammar2Fix produces high-quality patches. Themedian patch

produced by Grammar2Fix passes all (100%) of validation tests

for the corresponding subject while the median patch produced

using the manually test suites that are provided with the repair

benchmark passes only about 90% of validation tests.

In summary, the main contributions of this work are as follows:

(1) We introduce a systematic approach to discover the condition

under which a string-processing program fails based on a

single failing string input. This failure condition is explicitly

represented as a grammar.

(2) We introduce a set of techniques to query the user systemat-

ically with alternative string inputs in the active grammar

inference. Furthermore, we present some heuristics to re-

duce the number of queries to the user to learn the grammar

under minimal examples.

(3) We present an approach to generate a repair test suite that

test-driven automated program repair tools can use to pro-

duce high-quality patches for buggy string-processing pro-

grams, avoiding repair over-fitting.

(4) We conduct a set of experiments on 329 buggy programs and

show that our approach is effective in learning grammar for

failure conditions of different kinds of programs.

Reproducibility. To facilitate the reproduciblilty, we make our

implementation of Grammar2Fix, our collection data, and scripts

available at: https://github.com/charakageethal/grammar2fix.
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2 MOTIVATING EXAMPLE

We demonstrate the necessity of having a grammar for failing

inputs through an example Python program shown in Listing 1.

The expected functionality of this program is to count the vowels

(A, a, E,e, I, i, O, o, U, u) of a given string. However, there is a bug

in Line 3 due to which the program does not count the ‘a’s in a

string. Thus, the program returns incorrect outputs for all strings

containing ‘a’s, which is a functional bug.

1 def find_vowel_count(input_str):

2 n_vowels =0

3 vowels =['A','E','e','I','i','O','o','U','u

'] #Bug - no `a'

4 for c in input_str:

5 if( c in vowels ):

6 n_vowels +=1

7 return n_vowels

Listing 1: Buggy Python Program

Assume that a user finds that this program fails under the input

łcoveragež. With only this single input and without program anal-

ysis, it is challenging to identify why the program fails. Similarly,

a single failing input is insufficient to identify and fix this bug au-

tomatically. To locate the failure and validate the generated fixes,

automated repair and debugging techniques need more passing and

failing inputs.

As this is a semantic bug, only the human (the user or the devel-

oper) can answer whether a test case is passing or failing. However,

finding more passing and failing inputs with human intervention is

inefficient. This difficulty can be overcome by developing an auto-

mated test oracle [4] for this buggy program. Such a test oracle can

be developed based on the pattern of failing inputs. The pattern of

a set of strings can be formally given as a grammar. Therefore, our

objective is to develop an automated approach to induce a grammar

for the failing inputs based on the given failing input of the bug. A

grammar describing the pattern of the failing inputs can be used as

an automated test oracle to produce more passing and failing test

inputs automatically. Also, such a grammar can be used to analyze

the nature of the bug.

To induce a grammar for the failing inputs, we need more than

one failing input and some passing inputs. Taking the given fail-

ing inputs as the base, it is possible to generate more test inputs.

However, this should be done systematically to support grammar

inference rather than randomly, as the human labels the generated

test cases. We can observe that the program inputs of Listing 1 are

not structured, i.e., the program inputs do not adhere to a particular

grammar. Thus, input grammar, i.e., the structure of valid inputs,

is not an applicable concept to induce a grammar for the failing

inputs of the given buggy program.

Considering these challenges, we present a novel technique

Grammar2Fix to infer a grammar for the failing inputs of a buggy

program, using only a single failing input.

3 METHODOLOGY

Figure 1 shows the general procedure of Grammar2Fix, our au-

tomatic technique that learns to identify failure-inducing string

inputs. Grammar2Fix takes as input one failing input 𝑓 and a bug

oracle (OB ) and produces as output a grammar oracle (OG ). From

the failing input 𝑓 , Grammar2Fix systematically generates alter-

native inputs which are then labelled by OB as either passing or

failing. From the generated and labeled test inputs, Grammar2Fix

infers a grammar oracle (OG ) whose objective is to accurately pre-

dict the label which the OB would assign to a test input.

The bug oracle (OB ) can be the user or developer who discovered

the bug or some other mechanism. OB compares the corresponding

program output 𝑜𝑝 of the given input with the expected, correct

output 𝑜𝑐 . If both are equal (𝑜𝑝 = 𝑜𝑐 ), the test input is labelled as

passing, otherwise it is deemed as failing. As this work focuses on

functional bugs, program crashes and hangs [17] cannot be used as

the bug oracle, so we assume the bug oracle is a human.

One failing string input is not enough to infer the pattern of

many other failing inputs of a buggy program. Firstly, the reason

for why a string failed can be interpreted inmultiple ways. Secondly,

a failing input can contain parts that are not relevant to the failure.

Removing such parts does not turn a failing input into a passing

one. To address these issues, Grammar2Fix generates more test

inputs based on the given failing input (𝑓 ). Grammar2Fix then

removes the parts of 𝑓 that are not related to the failure so as to

identify the actual cause for the failure.

Grammar2Fix represents the bug oracle OB and thus the set

of passing and failing inputs as a formal grammar. Grammar2Fix

infers this grammar incrementally using several heuristics to ex-

plain the pattern of the failing inputs such that the failing inputs

adhere to the grammar and the passing inputs do not. The first

version of the grammar can be over-fitting, as a single failing input

might not contain all the possible characters of the failing inputs. To

address this, Grammar2Fix generalizes and extends the grammar

adequately to capture the failure condition of the program.

According to this process, Grammar2Fix has the following main

steps (Figure 1).

(1) Minimise the given failing input (𝑓 ) to the smallest failing

input, using delta debugging minimisation.

(2) Grammar inference, which infers a grammar from the test

inputs generated during delta debugging minimisation.

(3) Grammar Generalization, which generalises the grammar

using additional failing and passing input.

(4) Grammar Extension, which extends the grammar created

after step three by finding more failing inputs through mu-

tating the given failing input (𝑓 ).

The four steps of Grammar2Fix are based łZooming in & Zoom-

ing out" research methodology that is applied in various domains,

including decision making and organizational studies [24]. In the

first two steps, Grammar2Fix łzooms in" into the root cause of the

failure and generates a first-level grammar. The first-level grammar

could be overfitting with the root cause. Thus, in the last two steps,

Grammar2Fix łzooms out" applying generalization and extension

steps to avoid overfitting.

3.1 Delta Debugging Minimization

Delta Debugging Minimization (ddmin) [33] is an algorithm that

can reduce a failing input to a minimal input (𝑓min) reproducing

the bug. A minimal failing input (𝑓min) is a failing input that cannot

be divided further to obtain more failing inputs [33]. ddmin uses a

divide and conquer approach to reduce the given failing input. As
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Figure 1: Overall process of Grammar2Fix

the failing input is divided, some new test cases are intermediately

generated. Thus, ddmin can be used as a test generation method as

well.

We apply ddmin to the given failing input (𝑓 ). The new test inputs

generated intermediately should be labelled (i.e., check whether

they are passing or failing). Grammar2Fix uses the bug oracle (OB )

for this purpose. At the end of the step, ddmin returns the minimal

failing input exposing the bug (𝑓min) traced through 𝑓 .

Let 𝐹 be the set of failing test cases, and 𝑃 be the set of passing

test cases generated in ddmin. The sets 𝐹 and 𝑃 are disjoint, i.e.,

𝐹 ∩ 𝑃 = ∅. Also, 𝑓 , 𝑓min ∈ 𝐹 . Let OB be the bug oracle.

As an example, consider the buggy program in Listing 1 (Section

2). ddmin produces the following outcomes for the given failing

input łcoverage".

• 𝐹 = { łcoverage", łrage", łra", ła"}

• 𝑃 = { łcove", łr"}

• 𝑓min = ‘a’

The given failing input (𝑓 ) and the test cases generated in addi-

tion to 𝑓min can be considered as the neighborhood of 𝑓min. There-

fore, test inputs generated by ddmin illustrate the characteristics

of the failure condition more concretely than randomly generated

test inputs. A basic intuition about the failure condition can be

built based on the minimal failing input (𝑓min) and the intermediate

passing (𝑃 ) and failing (𝐹 \ 𝑓min) inputs. Hence, we use these test

inputs in the next steps.

3.2 Grammar Inference (GI)

Given the test inputs generated in ddmin, Grammar2Fix induces

a grammar given as a Deterministic Finite Automata (DFA). To

induce a DFA from 𝐹 and 𝑃 , we apply Regular Positive and Negative

Inference (RPNI) [8] with a modification to its merging technique.

Definition 1. A Deterministic Finite Automaton (DFA) can be

defined by a 5-tuple (𝑄, Σ, 𝛿, 𝑞0, F ) where 𝑄 is a finite set of states,

Σ is a finite set of symbols called the alphabet, 𝛿 is the transition

function: 𝛿 : 𝑄 × Σ→ 𝑄 , 𝑞0 is the initial state (𝑞0 ∈ 𝑄), and F is a

set of final/accept states (F ⊆ 𝑄). A DFA can have self-transitions,

i.e., transitions from one state to itself, and inter-state transitions, i.e.,

transitions between two states.

A DFA can be modeled to accept any given set of strings while

rejecting the others even without knowing the complete alphabet

(e.g. a prefix tree acceptor [8]). Also, by adding more characters

to the transitions, a DFA can be extended to accept more strings.

Moreover, even though a single DFA may have a limited expressive

power, a collection of DFAs combined with disjunctions can model

more complex patterns. Grammar2Fix uses RPNI [8] to infer DFAs,

as it is more accurate compared to other DFA inference algorithms

such as GOLD [10]. Also, it has a flexible merging technique that

generalizes the DFA through merging the states.

Given a set of positive and negative examples, RPNI creates

a DFA that accepts all the positive examples and rejects all the

negative examples. As the grammar is modeled for failing inputs, we

consider 𝐹 as the positive examples and 𝑃 as the negative examples.

Following RPNI algorithm, first, we develop a Prefix Tree Acceptor

(PTA) based on 𝐹 , which results in a DFA accepting only the strings

in 𝐹 . Next, following RPNI merge [8], the possible states of the DFA

are merged iteratively such that no string in 𝑃 is accepted.

Grammar2Fix uses an additional constraint compared to RPNI

merging algorithm as follows. Given a pair of states, if there are

inter-state transitions that take any character of 𝑓min, those states

are not merged.

This constraint enforces the characters of 𝑓min to appear only

in the inter-state transitions of the resulting DFA, which makes

those characters mandatory in the grammar for failing inputs. In a

deterministic finite automaton, the characters in a self transition

can have zero or more occurrences in a string accepted by the

DFA [14]. Thus, the self-transitions indicate the characters that are

not relevant to the failure. The DFA obtained in this step shows

where 𝑓min can appear in failing inputs.

As an example, consider the 𝐹 obtained for the failing input

łcoverage" in Section 3.1. The PTA for all the failing inputs in 𝐹 is

given in Figure 2. The states 𝑞8, 𝑞10, 𝑞12 and 𝑞13 are the final states

that correspond to łcoverage", łra", łrage" and ła", respectively. The

inter-state transitions between 𝑞0 and 𝑞13, 𝑞9 and 𝑞10, and 𝑞5 and

𝑞6 take ‘a’. As ‘a’ is a character of 𝑓min, these states are not merged

according to our constraint. The remaining states can be safely

merged such that no string in 𝑃 is accepted. The resulting DFA

is given in Figure 3 and it accepts all the strings in 𝐹 . This DFA
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𝑞0 𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6

𝑞7𝑞8

𝑞9 𝑞10 𝑞11 𝑞12

𝑞13

c o v e r a

g

e

r

a g e

a

Figure 2: Prefix Tree Acceptor (PTA) for 𝐹 derived from the

failing input łcoverage" of the buggy program in Listing 1

indicates that ‘a’ is mandatory in the failing inputs, and the other

characters (‘c’,‘o’,‘v’,‘e’,‘r’,‘g’) can appear zero or more times.

𝑞0 𝑞1
a

c,r,o,v,e g,e

Figure 3: Basic level grammar with the modification to

RPNI’s merging technique. 𝑓min =‘a’

The resulting grammar is named Basic Level Grammar.

3.3 Grammar Generalization

We can obtain only a limited amount of information about the

failure condition from the given failing input (𝑓 ) and the test cases

generated by ddmin. Therefore, the basic level grammar can overfit

with the failing inputs generated through ddmin (𝐹 ). To avoid this,

we apply generalization steps to the basic level grammar.

3.3.1 Basic Generalisation (BG). The Basic Generalisation (BG)

step focuses on generalising the characters of the self-transitions

in the DFA.

The self-transition of a state has few characters, as we used only

the failing input set 𝐹 (Section 3.1) to develop the DFA. Nevertheless,

it can take any character except the characters used in the inter-

state transitions, as the characters mandatory to form failing inputs

are already in the inter-state transitions. Therefore, we generalize

these transitions as follows. Given a state 𝑞𝑖 , with one or more

interstate-transitions

i) BG identifies the set of characters (𝐶𝑖 ) in the outgoing inter-

state transitions of 𝑠𝑖 .

ii) BG updates the characters of the self transition of 𝑠𝑖 to in-

clude any character except the characters in 𝐶𝑖 ( 𝐶𝑖
C - com-

plement of 𝐶𝑖 ).

After the conversion, we name such self-transitions as Comple-

mentary Self-Transitions.

Example: Consider the DFA given in Figure 3. The state 𝑞0 has

an outgoing inter-state transition taking ‘a’ to reach 𝑞1. Also, it

has a self transition taking ‘c’, ‘r’, ‘o’, and ,‘v’. In this generalization,

the self transition is changed as it can happen under any character

except ‘a’ ({a}C), which is the complementary self-transition for 𝑞0.

𝑞1 also has a self-transition that takes ‘g’ and ‘e’. However, this

state has no outgoing inter-state transitions. Thus, this generaliza-

tion changes the self-transition in 𝑞1 as it can happen under any

character (Because, ∅C = 𝑈 ;𝑈 set of all elements). The DFA after

this generalization is in Figure 4.

𝑞0 𝑞1
a

{a}C All

Figure 4: After adding complementary transition to 𝑆 and 𝑞1.

All is the set of all characters

3.3.2 Handling Special Cases (HSC). Positioning the characters

of 𝑓min at the beginning or end of failing test inputs could lead

to the initial state without complementary self-transitions and

final states without complementary self-transitions and outgoing

transitions. This could be either an attribute of failing inputs or

overfitting to the failing inputs. To check this case, we extend 𝑓 , as

ddmin cannot explore beyond the given failing input. ddmin avoids

possible overfittings in the other states, as it generates new test

cases through fragmenting 𝑓 .

The DFA at this point may have the following properties, which

are considered special cases.

i) The initial state (𝑞0) has no complementary self-transition.

ii) Final states have no complementary self-transitions and out-

going inter-state transitions.

If the DFA has i), it could mean that the failing inputs must start

with the characters in the outgoing-transitions of 𝑞0. Otherwise,

the current grammar overfits to the given failing input (𝑓 ) and it

should be generalized. To check if overfitting occurs, we create a

random string without any character of 𝑓min and add it to the front

of 𝑓 . If the resulting test input is failing, it signals the overfitting,

and we add a complementary self-transition to the 𝑞0.

If the DFA has ii), it could mean that the failing input must end

at these state. Otherwise, the current grammar overfits to the given

failing input and it should be generalized. To check if overfitting

occurs, for each such final state, first, we select a failing input that

ends at the state from 𝐹 (Section 3.1). We add a random string to the

end of the selected failing input. If the resulting input is failing, it

signals the overfitting, and we add a complementary self-transition

to the final state.

As an example, ‘a’ is also a failing input under the bug in the moti-

vating example (Section 2). However, if this is the initial failing input

(𝑓 ), the DFA at this point has no complementary self-transition in

𝑞0 and no complementary self-transition and outgoing inter-state

transition in the final state. This DFA implies that ‘a’ is the only

failing input, which is incorrect. Nevertheless, following the pro-

cess described above, we find that adding characters to the front

or the end gives failing inputs. Thus, we conclude that 𝑞0 and the

final state require complementary self-transitions.

3.3.3 Finding the character class of the minimal failing input 𝑓min

(CCF). We discovered that there are more than one minimal failing

inputs with the same length under some bugs. In such situations,

more minimal failing inputs can be explored by substituting the

characters of one minimal failing input. Thus, CCF step focuses on
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finding the character substitutions, i.e., the character class, produc-

ing minimal failing inputs.

In this step, we assume that the pattern of a group of minimal

failing inputs of the same length can be abstracted in terms of

the unique characters of one minimal failing input of the group.

When an input grammar is unavailable, this assumption helps to

reduce the search space. Based on this assumption, we substitute

the unique characters with a set of random characters distinct to

each other. In other words, If the set of unique characters of 𝑓min is

𝑈 = {𝐶1,𝐶2, · · · ,𝐶𝑛} (𝐶1 ≠ 𝐶2 ≠ 𝐶3 · · · ≠ 𝐶𝑛), we substitute 𝐶1 ←

𝐴1, 𝐶2 ← 𝐴2, 𝐶3 ← 𝐴4, · · · , 𝐶𝑛 ← 𝐴𝑛 , where {𝐴1, 𝐴2, 𝐴3, · · ·𝐴𝑛}

is the set of random characters and 𝐴1 ≠ 𝐴2 ≠ 𝐴3 · · · ≠ 𝐴𝑛 (Line 5

Algorithm 1). The resulting test input is presented to the bug oracle

(𝑂𝐵 ) for labelling. Through our experiments, we have identified

that this technique can explore minimal failing inputs with the

same length effectively.

Example: If 𝑓min=łabab" , there are two unique characters ‘a’ and

‘b’, and we assume that the pattern of the minimal failing inputs

are of the form 𝐶1𝐶2𝐶1𝐶2 (where 𝐶1 ≠ 𝐶2). Then we substitute

‘a’← ‘c’ and ‘b’← ‘d’. This substitution produces łcdcd", and it is

presented to𝑂𝐵 . (Here, substitutions such as ‘a’← ‘c’ and ‘b’← ‘c’

are considered invalid, as ‘a’ and ‘c’ are substituted with the same

character which breaks the pattern).

We repeat this process for 𝑛 iterations, and there are two main

cases depending on the passing inputs generated in the process

(Algorithm 1).

Case 1 All the generated inputs are passing . We conclude that

𝑓min is the only minimal failing input, and the character

class (𝐶𝑓min
) is only the set of unique characters (𝑈 ) (Line

13 Algorithm 1).

Case 2 Not all the generated inputs are passing. We conclude that

except the substitutions leading to produce passing inputs

(𝑃𝐴), the unique characters of 𝑓min can be replaced by any

other set of characters distinct to each other. Thus, 𝐶𝑓min
=

All \ 𝑃𝐴 ∪ {𝑈 } (Line 16 Algorithm 1)

In Algorithm 1, 𝑃𝐴 and 𝐶𝑓min
are sets of sets.

Under Case 1, no change is done to DFA. The motivating exam-

ple (Section 2) falls under Case 1, as the ‘a’ is the only minimal

failing input.

Under Case 2, if 𝑠 ∈ 𝐶𝑓min
, for each character in 𝑈 in the inter-

state transitions, there is a corresponding character in 𝑠 . By replac-

ing each character of the inter-state transitions with its correspond-

ing character in 𝑠 and changing the complementary self-transitions

accordingly, a new DFA is created. This is done for all the sets in

𝐶𝑓min
, which results in a collection of DFAs that are connected with

disjuctions/łOR (
∨
)" operator.

Example: Consider 𝑓min=łabab" and the DFA presented in Figure 5.

Assume Case 2 and Algorithm 1 returns the set of character sub-

stitutions 𝐶𝑓min
= {{𝐶11,𝐶21}, {𝐶12,𝐶22} · · · {𝐶1𝑛,𝐶2𝑛}}, the DFA

in Figure 5 is converted to a collection of DFAs connected with

łOR" operators as in Figure 6, where 𝐶𝑖 𝑗 is the assignment to the

ith unique character of 𝑓min from jth substitution set.

3.4 Grammar Extension (GE)

One failing input can be insufficient to capture all the properties of

the failure condition for certain bugs, even with our generalisation

Algorithm 1 Character Class Finding

Input: 𝑓min : Minimal Failing Input

Input: OB : Bug Oracle

Input: 𝑛 : Substitution Iterations

Output: 𝐶𝑓min
: Character Class of 𝑓min

1: 𝑈 ← unique_characters(𝑓min)

2: 𝑃𝐴 ← ∅

3: n_success← 0

4: for 𝑖 ← 1 to 𝑛 do

5: N ← get_new_random_assignment ()

6: 𝑡new ← 𝑟𝑒𝑝𝑙𝑎𝑐𝑒_𝑢𝑛𝑖𝑞𝑢𝑒_𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠 (𝑓min,N)

7: if OB (𝑡new) = Pass then

8: 𝑃𝐴 ← 𝑃𝐴 ∪ {N}

9: n_pass← n_pass + 1

10: end if

11: end for

12: if
n_pass

𝑛 = 1 then

13: 𝐶𝑓min
← 𝑈 //Case 1

14: else

15: //Let All be the set of all possible character substitutions

16: 𝐶𝑓min
← All \ 𝑃𝐴 ∪ {𝑈 } //Case 2

17: end if

18: return 𝐶𝑓min

𝑞0 𝑞1 𝑞2 𝑞3 𝑞4
a b

{a}C

a b

Figure 5: DFA before finding the character class of 𝑓min

𝑛∨

𝑖=1

𝑞0 𝑞1 𝑞2 𝑞3 𝑞4
𝐶1𝑛 𝐶2𝑛

{𝐶1𝑛}
C

𝐶1𝑛 𝐶2𝑛

Figure 6: Abstract Representation of the collection of DFAs

under 𝐶𝑓min
= {{𝐶11,𝐶21}, {𝐶12,𝐶22} · · · {𝐶1𝑛,𝐶2𝑛}}

steps described in Section 3.2). As an example, there are bugs with

more than one minimal failing inputs with different lengths, which

cannot all be explored by the CCF step. In addition, due to the

limited number of substitution iterations, CCF might not find all

minimal failing inputs. To address these issues, we introduce the

Grammar Extension (GE) step as described in Algorithm 2.

GE extends the grammar oracle (OG ) by applying steps 1 - 3

described in Sections 3.1-3.3 to failing test inputs generated via

mutational fuzzing [7]. We run 𝑁 fuzzing iterations, and use the

grammar oracle (OG ) to predict if the inputs are failing or passing.

If OG predicts the test input (𝑡𝑠 ) as passing, we present it to the

bug oracle (OB ) for labelling. If OB labels 𝑡𝑠 is failing, it implies

that the current grammar oracle (OG ) cannot correctly identify this

failing input. Therefore, we apply step 1-3 of Grammar2Fix to 𝑡𝑠
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and derive a new grammar (Gnew). The grammar oracle (OG ) is

updated with Gnew with an łOR" operator, and the seed corpus (C)

is updated with the new failing input 𝑡𝑠 .

At the end of the four steps (Sections 3.1 - 3.4), we obtain the

grammar describing the failure condition as a DFA or a collection

of DFAs connected with łOR" operators. The test inputs labelled

by the bug oracle (OB ) in the grammar inference process are part

of the repair test suite, as shown in Figure 1 which is used as an

input to an automated program repair tool to generate a patch for

the buggy program.

Algorithm 2 Grammar Extension

Input: 𝑓 : Initial failing input

Input: OG : Grammar oracle

Input: OB : Bug oracle

Input: 𝑁 : Fuzzing iterations

1: Let C be the seed corpus of failing inputs.

2: C ← {𝑓 }

3: for 𝑖 ← 1 to 𝑁 do

4: 𝑓 ′ ← pick_random(C)

5: 𝑡𝑠 ← mutate_fuzz(𝑓 ′)

6: if OG (𝑡𝑠 ) =Pass then

7: if OB (𝑡𝑠 ) =Fail then

8: Gnew ← Derive_Grammar(𝑡𝑠 )

9: OG ← OG ∨ Gnew
10: C ← C ∪ {𝑡𝑠 }

11: end if

12: end if

13: end for

4 EXPERIMENTAL SETUP

4.1 Research Questions

RQ.1. (Grammar oracle quality) How accurately does the grammar-

based oracle classify the test cases in a given test suite?

RQ.2. (Ablation study) What are the contributions of the heuristics

to the accuracy of the grammar-based oracles?

RQ.3. (Labelling effort) Is the number of requests that are sent to

the human oracle for labeling reasonable?

RQ.4. (Patch quality) How does the quality of patches produced

through the grammar inference algorithm’s auto-generated

test suites compare to the quality of patches produced through

the manually constructed test suites?

4.2 Experimental Subjects

We selected three benchmarks according to the criteria given below

to evaluate Grammar2Fix and answer the research questions.

(1) There should be programs that take string inputs.

(2) There should be a diverse set of real defects that lead to

functional bugs, i.e., programs produce incorrect outputs for

specific inputs. There should be one functional bug for each

subject.

(3) For each subject, there should be a golden version, i.e., a

program that produces the expected, correct output for an

input. For a given input, we simulate the bug oracle’s(OB )

task by comparing the subject’s (buggy program’s) output

with its golden version’s output. If both are different, the test

case is labelled as failing.

(4) For each subject, there should be a manually constructed

and labelled training test suite.

(5) For each subject, there should be at least one failing test case

in the training test suite, i.e., a test input for which the buggy

and the golden version produce different outputs.

We found that the benchmarks IntroClass [15],Quixbugs [18],

andCodeflaws [29] satisfy the above criteria. IntroClass [15] con-

sists of C programs that were submitted under six (6) assignments

by a group of students. We selected the programs under the assign-

ments Syllables and Checksum, as those take string inputs. Under

each of the two assignments, there is a golden version and a labelled

test suite. Based on the second and fifth criteria, we excluded the

programs showing flaky behaviour and having no failing inputs.

After that, there were 52 subjects under checksum and 121 subjects

under syllables for the experiments.

We selected 4 Python programs from Quixbugs [18] and 152

C programs from Codeflaws [29] based on the first criterion. In

this selection, we excluded the programs taking mixed inputs (e.g.

strings and numbers together) in the benchmarks. For each of these

selected subjects, there is a separate labelled test suite and a golden

version.

4.3 Setup and Evaluation

For each subject, we apply our grammar inference algorithm select-

ing a random failing input from the training test suite (manually

labelled test suite). After the grammar is generated, we apply it on

the training test suite. The test inputs adhering to the grammar

are predicted as failing. The others are predicted as passing. In this

manner, we used the inferred grammar as a test oracle (i.e., gram-

mar oracle (OG )). We use the test cases generated in the grammar

inference process (i.e., auto-generated test suite) to generate repairs

for the buggy programs automatically.

In the experiments, we use 20 substitution iterations (𝑛 = 20) in

finding the character class of a minimal failing input (CCF - Section

3.3.3). Also, 5 mutational fuzzing iterations are (𝑁 = 5) in grammar

extension (GE - Section 3.4).

Related to RQ.1. and RQ.2., we calculate Accuracy (Equation 1)

and Conditional Accuracy for failing (Equation 2) and passing in-

puts (Equation 3). (Conditional Accuracy (Failing) : recall for failing

inputs, Conditional Accuracy (Passing) : recall for passing inputs).

Here, the actual labels of the test cases are compared with the labels

predicted by OG . If both the labels for a test case are similar, it is

considered as the label has been correctly predicted; otherwise not.

In addition to these, we count the number of queries sent to the

bug oracle (OB ), i.e., labelling effort, to answer RQ.3..

Accuracy =
Number of correctly predicted test inputs

Number of test inputs in the test suite
(1)

Conditional

Accuracy (Failing)
=

Number of correctly predicted

failing inputs

Number of failing inputs

in the test suite

(2)
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Conditional

Accuracy (Passing)
=

Number of correctly predicted

passing inputs

Number of passing inputs

in the test suite

(3)

Precision-(Failing) =

Number of correctly predicted

failing inputs

Total number of inputs

predicted as failing

(4)

Precision-(Passing) =

Number of correctly predicted

passing inputs

Total number of inputs

predicted as passing

(5)

Recall-(Passing) = Conditional Accuracy (Passing) (6)

Recall-(Failing) = Conditional Accuracy (Failing) (7)

The benchmarks do not provide a balanced test suite, a test suite

with equal passing and failing inputs, for most selected subjects.

Thus, there is an impact from theClass Imbalance Problem [20] in the

evaluation, andAccuracy is not a goodmetric to evaluate the quality

of a grammar-based oracle. Therefore, we measured Conditional

Accuracy for both failing (Equation 2) and passing (Equation 3)

inputs in addition to Accuracy. These three metrics together show

the quality of a grammar oracle (OG ) under the class imbalance

problem; therefore, we use those to answer RQ.1. and RQ.2..

Regarding RQ.4., we selected GenProg [16] as the automated

program repair tool in the experiments due to its capability to repair

large programs cost-effectively. For each subject, we run GenProg

on the manually created test suits, given by the benchmark, and

the test suite generated in the grammar inference process. Then,

we measure how many subjects can be repaired and how many

validation test cases that the repaired program can pass under the

manual and auto-generated test suites separately. We use these two

measures to answer RQ.4..

To minimize the impact of randomness and to gain statistical

power for the experimental results, we repeat each experiment 30

times per each subject. We set the maximum time to generate the

grammar oracle (OG ) to 10 minutes for each subject. Also, for each

test suite (manual and auto-generated), we allocate 10 minutes to

generate a repair through GenProg.

5 EXPERIMENTAL RESULTS

5.1 RQ.1. Labelling Accuracy

We are interested in the quality of the automated oracle that is

learned by Grammar2Fix for the bugs in our three benchmark sets.

Figure 7 shows the distribution of the prediction accuracy over the

different subjects in three benchmark sets as violin plots. For each

subject, we computed the average values over 32 runs.

For the majority of the projects, the oracle that is learned by

Grammar2Fix classifies correctly as passing or failing 92% of test

inputs (median overall accuracy). For the majority of subjects, the

oracle identifies passing test inputs with 94% precision and 96%

recall (Conditional Accuracy - Passing) and failing inputs with 100%

precision and 97% recall (Conditional Accuracy - Failing) - Figure 7a.

The median overall accuracy in QuixBugs is 88.36%; in IntroClass,

99.20% and in Codeflaws, 77.70%. Also, the median Conditional

Accuracy-Failing in QuixBugs is 99.31%; in IntroClass, 98.73% and

in Codeflaws 86.88% - Figure 7b.

These results indicate that the automated oracle that is learned

by Grammar2Fix classifies test inputs with a significantly high

accuracy in the majority of subjects. It implies that our grammar

inference approach can accurately induce a grammar to explain the

pattern of the failing inputs of a given buggy program. The high

conditional accuracy for passing and failing test inputs indicates

that the induced grammar is not only effective in recognising failing

inputs, but also can accurately reject passing inputs.

For the few subjects where the oracles were not very accurate, we

identified two main reasons. Firstly, Grammar2Fix does not model

dependencies among complementary-self transitions, as finding

such dependencies needs more labelled inputs. However, to describe

the failing input patterns of some bugs, such dependencies could

be necessary. Secondly, the mutational fuzzing iterations in GE

could be insufficient to identify all the constituents of the pattern of

the failing inputs. Especially when the program under test accepts

structured string inputs, structure-aware fuzzing might be more

effective [26, 32].

Result. Grammar2Fix induces high-quality grammars that ex-

plain failure conditions from string inputs with high overall accuracy.

The precision and recall for identifying failing test cases are both

above 97% for the majority of bugs among our subjects. The high con-

ditional accuracy for failing inputs indicates that the Grammar2Fix

is effective in predicting failing test inputs.

5.2 RQ.2. Ablation Study

We are interested in the contributions to accuracy from the different

heuristics namely Grammar Inference (GI), Basic Generalization

(BG), Handling Special Cases (HSC), Character Class Finding (CCF),

and Grammar Extension (GE) (Section 3.3 and Section 3.4). Figure 8

shows the prediction accuracy over the different subjects in the

three benchmark sets as violin plots. Again, for each subjects, we

computed the average values over 32 runs for the different heuristic

steps in the oracle inference.

According the violins of Figure 8, the overall accuracy and condi-

tional accuracy increase with the heuristics. The median of overall

accuracy increases from 60% for the first step (GI) to 92% for the

last (GE; via BG 61%, HSC 73%, CCF 89%). The median of condi-

tional accuracy failing increases from 17% the first step (GI) to 97%

for the last (GE; via BG 20%, HSC 30%, CCF 88%), demonstrating

that our heuristics are effective. The character class finding (CCF)

significantly improves the ability of identifying failing inputs in

terms of conditional accuracy because the DFA is expanded to a

collection of DFAs by exploring more minimal failing input. This

process significantly avoids overfitting of the grammar to training

examples. Also, we observe a slight decrease from CCF to HSC in

identifying passing inputs (conditional accuracy-passing), probably

because some bugs have passing inputs with the same length of

𝑓min. The limited substitution iterations in CCF might be insuffi-

cient to identify those. If this happens, Case 2 in CCF (Algorithm 1)
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(b) Benchmark-wise distributions

Figure 7: Violin plots of the distribution of overall accuracy, precision and recall. Figure 7a shows the overall distribution over

3 benchmarks, and Figure 7b shows the distribution under each benchmark

concludes that the unique characters of 𝑓min can be assigned with

any set of unique characters.

Result. Our results demonstrate that each of the heuristic steps

in Grammar2Fix improves the quality of the learned oracle. The

proportion of correctly identified failing inputs (conditional accuracy)

increases from less than 20% for the first step to 97% for the last.

5.3 RQ.3. Labelling Effort

Figure 9 shows the labelling effort in terms of the number of queries

to the user. For each bug, the user would need to answer less than

42 queries for the majority of projects (i.e., on the median).1 We find

1Recall, for reasons of practicality in our experiments we used the patched versions
instead of the user as bug oracles to send those queries.

that this is a reasonable number for several reasons. Firstly, the user

would answer simple Yes/No questions: łDoes the program process

this string input correctly?ž Observing the actual program output,

the human would respond "Yes" if the input is processed correctly;

otherwise, they would say "No". Even if the user would take 4

seconds to respond to each question, the automated oracle that is

used for auto-patching this bug would be automatically derived in

under three (3) minutes. Grammar2Fix being a blackbox appraoch,

this time is independent of the size of the program. We also note

that such queries do not need to be answered by the same user. If

different users report the same bug, Grammar2Fix will actively

amplify the information about the bug during the automated oracle

inference.
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Figure 8: Violin plots of the prediction accuracy after each step of Grammar2Fix as a distribution across all subjects. Concretely,

the steps are grammar inference (GI), basic level generalization (BG), handling special cases (HSC), character class finding

(CCF), and grammar extension (GE).
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Figure 9: Violin plots (log-scale) of the cumulative number

of queries to the bug oracle after each step of Grammar2Fix

as a distribution across all subjects.

For the few subjects that required a greater number of queries,

we found that the initially selected failing input is often signifi-

cantly longer than for the other subjects. Our input minimization

algorithm follows a deterministic number of steps, and after each

step Grammar2Fix interacts with the bug oracle (i.e., user) to la-

bel the newly generated input. If the first failing string input is

longer, the number of minimisation steps will be larger, leading

to an increase in the number of queries. Future advances in input

minimization algorithms will directly lead to the improvement of

Grammar2Fix in terms of the minimal required number of queries.

We also investigated the labelling effort of different steps. The

accumulated median number of queries after completing GI, BG,

HSC, CCF, and GE steps are 10.3, 10.5, 12, 32, and 42, respectively.

CCF and GE steps together generate 75% of the queries which is

expected. These are the main steps at which Grammar2Fix gener-

ates substantial new failing inputs, e.g., by mutational fuzzing, to

prevent the generated grammar from being overfit to the initially

selected/given failing inputs. As demonstrated in Figure 7 and an-

swered in RQ2, this additional effort leads to significant gains in

labelling accuracy

Result. For the majority of bugs in the three benchmark sets, a

human would need to answer at most 42 "Yes/No" questions about the

correct processing of string inputs (i.e., less than 3 minutes assuming

4 seconds per question). Given that bugs in stable real-world systems

are quite rare and that the query load can otherwise be distributed,

we believe that this human effort is reasonable.

5.4 RQ.4. Patch Quality

We are interested in the quality of the auto-generated patches after

Grammar2Fix negotiated with the user OB the failure condition

OG for buggy string-processing programs. To evaluate repair qual-

ity, we used the popular repair benchmark Codeflaws [29], as it

provides a manually created repair test suite, a separate validation

test suite (heldout test suite) for each subject, and scripts to work

with GenProg [16]. We did not use QuixBugs because Python is not

supported by GenProg nor Introclass because it has no separate

validation test suites. We ran GenProg 30 times on each subject,

providing the manual and auto-generated test suites.

Figure 10a shows (a) the proportion of bugs that could be re-

paired and (b) the proportion of validation tests that passed after the

successful repair across all subjects for the manually provided test
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suites and those generated during the oracle inference by Gram-

mar2Fix. As we can see, in both cases approximately 40% of the

subjects can be repaired. The probability to generate a valid repair

using the manually created test suites is slightly higher than for our

auto-generated test suites (on the median 40.52 for the manual and

39.87 for the auto-generated test suites). However, the proportion

of passing validation tests for the median subject is significantly

higher for our auto-generated test suites than that for manual test

suites (i.e., the median for manual test suites is 89.11% and for auto-

generated 100%). This means that the auto-generated test suites

by Grammar2Fix can produce high-quality patches for the buggy

subjects with GenProg.

Result. Grammar2Fix produces high-quality patches. The median

patch produced by Grammar2Fix passes all validation tests for the

corresponding subject while the median patch produced using the

manually test suites that are provided with the repair benchmark

passes only about 90% of validation tests.
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Figure 10: Repairability and Patch Quality under GenProg

6 THREATS TO VALIDITY

Similar to other empirical studies, there are various threats to the

validity of our results and conclusions. The first concern is external

validity, i.e., to what extent our findings can be generalized. We

have tested our approach in the three benchmarks, IntroClass [15],

Quixbugs [18], and Codeflaws [29]. These benchmarks are widely-

used APR benchmarks and contain a large number of real-world

defects.

The second concern is internal validity, i.e., to what extent our

study minimizes the systematic error. For each subject, we ran

the experiment 30 times and calculated the average of accuracy

(Equation 1) and conditional accuracy - passing& failing (Equation 3

and Equation 2). This technique helps to mitigate the spurious

observations due to the random selection approach in Section 4.3.

Also, it helps to gain statistical power for the results.

Our third concern is construct validity, i.e., to what extent a test

measures what it claims to be measuring. To reduce this threat,

we discuss at least two measures for each of the two independent

variables: accuracy and labelling effort.

7 RELATED WORK

This paper was motivated by the work LEARN2FIX [6] on deriving

automated test oracles for semantic bugs. LEARN2FIX [6] uses a

single failing input of the bug and returns an SMT(LRA) (Satisfi-

ability Modulo Linear Real Arithmetic Theory) [5] formula satis-

fied only by the failing inputs. The underlying learning technique,

INCAL [13], learns an SMT(LRA) formula from the given set of

positive and negative examples. The SMT(LRA) formula acts as the

automated oracle. However, as An and Yoo [2] point out, this ap-

proach cannot be applied to string-processing programs. Recently,

there have been tremendous advances in the solving of string con-

straints represented in a satisfiability modulo theory for strings

[1, 12, 30, 31, 34]. However, we are not aware of any work on learn-

ing string constraints. Instead, our work explores an altogether

different approach that is based on grammar learning. Our key ob-

servation is that grammars are a natural definition of the structure

of an input and can thus represent structural aspects of bugs in

string-processing programs.

DDSET [11] produces an outcome similar to Grammar2Fix. It

starts with a user-provided grammar that specifies the general pro-

gram input structure, a failing input, and a predicate (in our case

the user). DDSET is targeted at programs taking highly structured

inputs such as compilers while Grammar2Fix also works for pro-

grams processing unstructured string inputs. DDSET requires an

input grammar which is then pruned while Grammar2Fix does

not require any grammar to start with but learns a grammar that

represents the pattern of bug-revealing string inputs.

ExtractFix [9] uses symbolic execution to derive a constraint un-

der which a program produces a crash. This constraint is then used

to repair the program in a constrained-based manner. We tackle

the same underlying problem, i.e., that of overfitting in test-driven

program repair. However, focussing on crashing bugs, ExtractFix

assumes the availability of an automated oracle. In contrast, we are

focussing on semantic bugs, i.e., bugs that can only be identified by

a user. We propose a technique to learn the automated oracle from

the user and develop heuristics to minimize the number of queries.

8 CONCLUSION

We introduced Grammar2Fix, a human-in-the-loop approach to

inferring failure conditions of string-processing programs. Given a

single bug-triggering string input, its failure condition, in the form

of a regular grammar, can be identified and generalized through

several carefully designed heuristics and optimizations with a man-

ageable human effort. Our large-scale experiments on 329 subject

programs from three popular program repair benchmarks show

that Grammar2Fix can correctly predict passing and failing test

cases with more than 96% recall while the human effort, as mea-

sured by number of queries they need to answer, is reasonably low.

We could terminate the oracle learning, when the proportion of

incorrectly predicted labels drop below a certain threshold. This is

a significant step toward realizing our vision of human-in-the-loop

debugging and repair for semantic bugs.
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