THE UNIVERSITY OF

MELBOURNE

>

i\
<l
2= N

- \A

Expand the reach e
- - A
of Fuzzing ’ g‘f’

Fuzzing & Software Security Summer
School @NUS 2024

Thuan Pham
ARC DECRA Fellow & Senior Lecturer in Cyber Security

About me

- Senior Lecturer (U.S equiv. Associate Professor) in Cybersecurity
at University of Melbourne

- A fuzzing enthusiast

- Co-author of open-sourced tools including AFLFast, AFLGo,
AFLSmart, AFLNet, AFLTeam, EDEFuzz, and ProFuzzBench

- Founder & Lead of the Melbourne Fuzzing Hub

The Fuzzed Outline

Tutorial 1: Beyond Well-tested Applications

» Fuzzing stateful network protocol
implementations

» Fuzzing graph algorithm implementations

Tutorial 2: Beyond Crash Oracles

» Introduction to diff. & metamorphic fuzzing

» Fuzzing Web APIs for excessive data
exposures

{ ;(.);e;oj ©SCHLOSS DAGSTUHL ~ LZI GMBH
pacas icensed under Creative Commons License CC BY-NC-ND!

Acknowledgements

Acknowledgements

e
&

Australian Government

Australian Research Council

Google aWS

*
*
*

. (',RESC,M’ .‘

P!
T N\ s

THE UNIVERSITY OF
MELBOURNE

Beyond Well-tested Applications

AFLNET: A Greybox Fuzzer for Network Protocols

Van-Thuan Pham
Monash University
thuan.pham @monash.edu

Abstract—Server fuzzing is difficult. Unlike simple command-
line tools, servers feature a massive state space that can be
traversed effectively only with well-defined sequences of input
messages. Valid sequences are specified in a protocol. In this
paper, we present AFLNET, the first greybox fuzzer for protocol
implementations. Unlike existing protocol fuzzers, AFLNET takes
a mutational approach and uses state-feedback to guide the
fuzzing process. AFLNET is seeded with a corpus of recorded
message exchanges between the server and an actual client.
No protocol specification or message grammars are required.
AFLNET acts as a client and replays variations of the original se-
quence of messages sent to the server and retains those variations
that were effective at increasing the coverage of the code or state
space. To identify the server states that are exercised by a message
sequence, AFLNET uses the server’s response codes. From this
feedback, AFLNET identifies progressive regions in the state
space, and systematically steers towards such regions. The case
studies with AFLNET on two popular protocol implementations
demonstrate a substantial performance boost over the state-of-
the-art. AFLNET discovered two new CVEs which are classified
as critical (CVSS score CRITICAL 9.8).

Marcel Bohme

Monash University
marcel.bochme @monash.edu

Abhik Roychoudhury
National University of Singapore
abhik @comp.nus.edu.sg

“One of the things that I struggle with is the limitation AFL

seems to have, in that it only performs fuzzing with one
input (a file). For many systems such as network protocols,
it would be useful if fuzzing could be done on a sequence
of inputs. This sequence of inputs might be for example
messages necessary to complete a handshake in TLS/TCP."

— Paul (a member of the AFL’s user group) [8]

“I'm interested in doing something fairly non-traditional

and definitely not currently supported by AFL. I would like
to perform fuzzing of a large and complex external server
that cannot easily be stripped down into small test cases.”

— Tim Newsham (a member of the AFL’s user group) [8]

Fig. 1. Reguests from AFL's users asking for stateful fuzzing support

Greybox-Fuzzing for Stateful Network Protocols

Why should we care about network protocols?

FTP

Server

IP camera

RTSP Server
Stream

A

Command .:

MES

L. 2 Machine L. Machine
_é A _@ B

Quality

Management

!

Machine
C

Fuzzing stateful protocol implementations is challenging

 Server accepts sequences of
messages

 Server behaviour depends on
the current input & current
program state

—messdage order matters

—Knowing current server state &
how to drive the search

towards a specific state is
iImportant

220 FTP Server ready

USER foo

331 User foo OK. Password required
PASS foo

230 User logged in, proceed.

MKD demo

257 Directory created.

CWD demo

250 Requested file action okay, completed.
STOR test.txt

150 File status okay

226 Transfer complete

QUIT

221 Goodbye!

A sample FTP session to upload a file (test.txt)
to a new folder (demo) on the server

Existing widely-used approaches

1) Stateful Black-box Fuzzing, e.g., Peach, BooFuzz

- Require manual constructed state machine/model

- With no/limited feedback
2) Stateless Grey-box Fuzzing: AFL

4 N

“One of the things that I struggle with is the limitation AFL
seems to have, in that it only performs fuzzing with one
input (a file). For many systems such as network protocols,
it would be useful if fuzzing could be done on a sequence
of inputs. This sequence of inputs might be for example
messages necessary to complete a handshake in TLS/TCP.”

— Paul (a member of the AFL’s user group) [8]

4 N
“I’m interested in doing something fairly non-traditional

and definitely not currently supported by AFL. I would like
to perform fuzzing of a large and complex external server
that cannot easily be stripped down into small test cases.”

— Tim Newsham (a member of the AFL’s user group) [8]

-

10

Architecture of AFLNet

@ «] State Machine
Learning

(mutated) client requests

—
Y
Request
peapfiles |[[—"] Sequences Target State Selector [«
Parser
Captured network ‘ v
traffic
Sequence
S| 82| i | Sn N
FF? r Sequence Selector Mutators
Sequences T
Corpus | M X
M N

Message Pool

| server
| responses

I (e.g., “200 OK”,

: “400 ERR")

Server Under Test

feedback.

e AFLNet acts as a client.

 AFLNet is seeded with a corpus of recorded message exchanges.

AFLNet takes a mutational approach and uses state-feedback to dynamically construct
protocol state machine and guide the fuzzing process, together with code coverage

 AFLNet monitors server behaviours (e.g., code coverage) and its responses

11

Automated State Machine Inference

* Time consuming * Not time consuming
 Require domain knowledge * Capture the exact implemented
protocol

* Implemented protocol could be
different from the standard
specification

SETUP request

TEARDOWN
request

TEARDOWN

SETUP with a “range” parameter

Manual & static approach Automatic & dynamic approach *“

220 FTP Server ready

USER foo

331 User foo OK. Password required
PASS foo

230 User logged in, proceed.

MKD demo

257 Directory created.

CWD demo

250 Requested file action okay, completed.

STOR test.txt

150 File status okay
226 Transfer complete
QUIT

221 Goodbye!

13

AFLNet workflow

Prioritise “progressive” states that contribute more towards increased
code coverage.

Jpeap files \

Captured network
traffic

Request
Sequences
Parser

'

fs1

T

Sequences
Corpus |

Y

Y

Target State Selector

€

State Machine
Learning

| Server

g

Sequence Selector —

Sequence
Mutators

(mutated) client requests

R b Message Pool

| responses
| (0., 200 OK",

: “400 ERR")

> Server Under Test

14

Original message sequence (i.e., seed input)

‘ 220, 331 ’ 220, 331, 230 220, 331, 230, 257 220, 331, ..., 221

USER foo »| PASS foo »| MKDdemo — ... —» QUIT

And then, state 331 (User OK) is targeted

‘ 220, 331 ’ 220, 331, 530 220, 331, 530 220, 331, ..., 221
USER foo » PASS bar ———»| MKDdemo | — ... —» QUIT

Not logged in

PASS bar

inferred state machine

- liblivemedia in Live555 before 2019.02.03
mishandles the termination of an RTSP stream after RTP/RTCP-
over-RTSP has been set up, which could lead to a Use-After-Free

error that causes the RTSP server to crash (Segmentation fault)
or possibly have unspecified other impact.

SETUP request

TEARDOWN
request

TEARDOWN

SETUP with a “range” parameter

Alban Lecocq @skeetmtp - 13 Jan

'm using Afl to find "packet of death" for 3 years, but never manage to detect
statefull bug with it. Indeed there little litterature on the subject. Can't wait to
read more details on #AFLNet

AFLNet keeps evolving
https://github.com/aflnet/aflnet

Mar 2020
Released on GitHub

FTP, RTSP

+ SSH, TLS, SMTP,
DTLS, DICOM, DNS, SIP, MODBUS ...

neegroup”

Privacy Careers Disclosure Policy ~ Technical Advisories

The Challenges of Fuzzing 5G

Protocols

How to Hack Medical Imaging
Applications via DICOM

Public Reports 2021 Research Report

Tomsk State University

L0CKBOWN

May 2024
200+ citations, 800+ stars, 180+ forks

VE&% Home AboutUs News Threats Researches

Modbus va mdt s6 cong cu kiém
thi

Hoang Nguyen
Apr5,2022 + 14 min reac

https://github.com/aflnet/aflnet

ProFuzzBench: A Benchmark for Stateful Protocol Fuzzing
https://github.com/profuzzbench/profuzzbench

Build | @iy Analyze
» Patch target software (de-randomization; message ! 2
markers; state encoding) » Deploymentof the target software over * Line coverage overtime
- Copyfuzzers, automation scripts, configuration files several parallel containers * Branch coverage overtime
» Execution of a fuzzer with selected options * Protocol state coverage overtime

Compile target software for coverage-driven fuzzing

+ Compile targetsoftware for post-execution analysis * Save raw data from the fuzzer

Figure 1: Workflow of benchmark automation.

18

Activity: Code Understanding &
Discussions

- How to support a new
protocol?

- What are the limitations of
AFLNet and potential
solutions?

¥

)

19

Reading recommendation

Nyx-Net: Network Fuzzing with
Incremental Snapshots

Large Language Model guided
Protocol Fuzzing

FitM: Binary-Only Coverage-Guided

Ruljie Meng?, Martin Jftrchev . Fuzzing for Stateful Network Protocols

*National Un

+" AXNY AT

NSFuzz: Towards Efficient and State-Aware Network Service | jujian Beier Marc Munier
Fuzzing TU Berlin TU Berlin
j.beier@tu-berlin.de m.munier @campus.tu-berlin.de

SHISONG QIN, Tsinghua University, China
FAN HU, State Key Laboratory of Mathematical Engineering and Advanced Computing, China
ZHEYU MA, BODONG ZHAO, TINGTING YIN, and CHAO ZHANG, Tsinghua University,

China

20

Have fun with AFLNet ©

The System: TopStream Movie Streaming Service

user device

SMART TV I

__oio__l TopStream Movie Service Provider
“—E_‘ Streammg Server (e.g., Telco service)

N R

https://github.com/

SWEN90006-2023/
SWEN90006-assighnment-2
21

https://github.com/

GraphFuzz: Automated Testing of Graph Algorithm
Implementations with Differential Fuzzing and
Lightweight Feedback

Wengi Yan, Manuel Rigger, Tony Wirth, Van-Thuan Pham

Abstract—Graph algorithms, such as shortest path finding,
play a crucial role in enabling essential applications and services
like infrastructure planning and navigation, making their cor-
rectness important. However, thoroughly testing graph algorithm
implementations poses several challenges, including their vast
input space (i.e., arbitrary graphs). Moreover, through our
preliminary study, we find that just a few automatically generated
graphs (less than 10) could be enough to cover the code of
many graph algorithm implementations, rendering the code
coverage-guided fuzzing approach—one of the state-of-the-art
search algorithms—Iess efficient than expected.

To tackle these challenges, we introduce GraphFuzz, the
first automated feedback-guided fuzzing framework for graph
algorithm implementations. Our key innovation lies in identifying
lightweight and algorithm-specific feedback signals to combine
with or completely replace the code coverage feedback to enhance
the diversity of the test corpus, thereby speeding up the bug-
finding process. This novel idea also allows GraphFuzz to
effectively work in both black-box (i.e., no code coverage instru-
mentation/collection is required) and grey-box setups. GraphFuzz
applies differential testing to detect both crash-triggering bugs
and logic bugs. Our evaluation demonstrates the effectiveness of
GraphFuzz. The tool has successfully discovered 12 previously
unknown bugs, including 6 logic bugs, in 9 graph algorithm
implementations in two popular graph libraries, NETWORKX
and IGRAPH. All of them have been confirmed and and 11 bugs
have been rectified by the libraries’ maintainers.

I N
“This morning I was talking to a guy in Microsoft Research who
is pretty famous. He described a neat project he worked on that
essentially boiled down to a very complex graph shortest-path
problem. That got my mind churning on the general problem
of graph algorithms and testing graph algorithm implementa-
tions.[...] I hadn’t looked at a graph problem in a while so I
decided to code up the more-or-less canonical example: Dijkstra’s
algorithm [...]. Even with a tiny graph it’s easy for a human to
make a mistake. So, what about testing graph algorithms? In
some ways this is a classic problem: a large number of inputs,
possibility of bad arguments, many assumptions, and so on.”

— J. D. McCaffrey (Research Software Engineer at Microsoft) [2]

h - >

Fig. 1: A researcher’s view on the challenges of testing
graph algorithm implementations.

weights that are non-negative, and an arbitrary source vertex, s,
as its inputs. The algorithm is supposed to find shortest paths
from s to all other vertices on . With G having M edges
and NN vertices, this renders the input space exceptionally
vast to thoroughly test an implementation of the algorithm,
surpassing the capacity of human testers. In particular, we
would need to select a random graph G and a random vertex

22

Graph algorithms & their applications
https://memgraph.com/blog/graph-algorithms-applications

[\F - -
o BN i1 High-level Execution Paths
/Chld sGa d\\ High-level

/ B def validateEmail (email): 2
oo execution tree
oo bos = email.find(ven
; — 41

_— (o4 71 — 1 FposSE=Nit

&
"R TANGLIN
n H20 LIFE SOURCE
(SEA)RTE LTD A F raise In
zo

g if email.r
8]
o\ e 5 raise Inj
X X / ondra Ry T NETID:3
> \\\ ¥ == | Fairprice Finest A /'\) \ \\
The Hilish m < T \\ E — ﬂ sz
1 ALEXANDRA —
\ @ Haw Par N ETRDY -
aw

T ey 1, T 3 HL paths HL/LL path ratio is low
\\ @ k2 Guesthouse terar 61 — 10 LL paths due to path explosion

«Low-level (x86)
: execution tree

W
i

Southern Ridges o

Google Maps Network Routing Symbolic Execution

23

How would you test graph algorithms impl.
And what could be the challenges?

(G B
C1. Vast In pUt Spa ce “This morning I was talking to a guy in Microsoft Research who
is pretty famous. He described a neat project he worked on that
Cz Test Oracle Problem essentially boiled down to a very complex graph shortest-path

problem. That got my mind churning on the general problem

[: of graph algorithms and testing graph algorithm implementa-
Given an input for a system, the tions.[...] I hadn’t looked at a graph problem in a while so I
challenge of distinguishing the decided to code up the more-or-less canonical example: Dijkstra’s

. : algorithm [...]. Even with a tiny graph it’s easy for a human to
correspondmg desired, correct make a mistake. So, what about testing graph algorithms? In

behaviour from potentially incorrect some ways this is a classic problem: a large number of inputs,
behavior is called the test oracle possibility of bad arguments, many assumptions, and so on.

—J. D. McCaffrey (Research Software Engineer at Microsoft) [2]
problem” [Earl et al. 2015] g

https://jamesmccaffrey.wordpress.com/2010/01/12/
testing-graph-algorithms/

24

https://jamesmccaffrey.wordpress.com/2010/01/12/

GraphFuzz: Code Coverage-Guided Differential Fuzzing

T z |
g, g, 0, — g, @3
Selector —»| Mutator |— @—» Interesting ' A,
A ? yes/no :
| T s
< > ’ A

g,9,..9 | I k /,
15277 Executor “'
_ J

Seed Corpus

25

Algorithms curated for
accessing GraphFuzz

2 popular graph libraries

- 7 categories of graph

algorit
- 9grap
- 21 gra

1MS

n problems

oh algorithm

implementations

Category

Problem

Algorithm

Implementation

NX IG
Shortest Eeli v v
Ford [24]
Path Path
Finding Finding Seldber
5l Radzik [25]
S h Dijkstra [3] v
eare Minimum Prim [41] v |V
Spanning Kruskal [42] v
Tree Boruvka [43] v
Strongly Tarjan [44] v v
Community | Connected Tarjan v
Detection Component (recurisve version)
Kosaraju [45] v
Bi-Connected
Component [46] v v
Centrality .
and garmomc [47] 7|
Importance i
p
Jaccard
Similarity Bl o “
Similarity M Hopcroft Karp [49] | v
Matching SEpslei "
Push-Relabel [50] v
Heuristic ;
Link ﬁgg;“‘c [48] 7 |
Prediction
Goldberg
e Max Tarjan [51] o o
Flow Value Dinitz [52] v
Boykov 7

Komogorov [53]

Preliminary results

6 logic bugs found in
implementations of

1) Goldberg-Radzik path finding

2) Tarjan strongly connected
components

3) Jaccard similarty
4) Max flow algorithm
5) Adamic-Adar link prediction

“This is puzzling — (so perhaps a bug). [...] Manually checking
these shows no negative cycles, but the [2,7] cycle has weight Q.
I suspect that is the trouble.”

— Prof. Dan Schult (The creator of NETWORKX)

>

27

However ...

Line Coverage

Shortest Path Length

Strongly Connected Components

Max Flow Value

140

300 |
100 A [
120 A
250 1
80 1 100
200 A
60 1 80
150 A
60
40
40 100
20 A 20 4 50 -
01— T T T T T T 01— T T T T T T 0 T T T T T
Minimum Spanning Tree Jaccard Similarity Max Matching
140 120
200 A
/—, 1204 | 1004
150 100 1 80 -
80
60
100 A 60
40 4
40 4
50 1
20 201
01— 01— 01—
80 Harmonic Centrality o AdamicAdar Bi-connected Components
14
140 A
70 1 120 l
120 A
601 100 - 106+
50 1 80
40 801
30 1 601 60 -
20 - 40 4 40 4
101 20 A 20 -
01— T T T T T T 01— r T T T T T 01— r T r T T T
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120

Time (minutes)

28

Observation & Insights % g

C3. Quickly saturated code coverage with small corpus size

We need other feedback signals

C4. Multi-language codebase or binary-only libraries

We may go back to black-box fuzzing, but can we do better than
that?

29

Criteria to design new feedback signals

Be able to support feedback-guided fuzzing of multi-language codebases
or binary-only libraries

i
Be lightweight => negligible overhead « o
Be distinguishable

Be able to produce manageable seed corpus ’,.__,_,;/ . \

30

Algorithm-specific signals

Graph problem Full Output Feedback Explanation
STP The length of the shortest path between two specified vertices | (() [shortest path length
SCC A list of all strongly connected components (n, 9) Z ;}lzlg]g?tg lca(;rgI]eZ?ncf)I:;S;)onent
MEV The value of the max flow from the source to the sink vertex | (v) v: flow value
MST A minimum spanning tree (w, e) ; 1ol welpn orthe Mt
’ e: number of edges on the MST
IC A list of scores between all pairs of vertices (v) v: the highest score
MM A list of matching pairs (n) n. the number of matching pairs
HC A dictionary of vertices with harmonic centrality as the value | (d) d: the difference between the two smallest scores
AA A list of scores between all pairs of vertices (v) v: the highest score
BCC A list of all bi-connected components ($) s: size of the largest biconnected component

31

Research Questions

RQ-1. Does adding the algorithm-specific feedback signals help improve
GraphFuzz’s performance

RQ-2. How does GraphFuzz perform if no feedback signal is in use?

RQ-3. How does GraphFuzz perform in a larger testing campaign?

32

RQ-1. Effectiveness & Efficiency of the new signals

RQ-2. Effectiveness & Efficiency of pure black-box
fuzzing

<

Results — Bug finding

- The new feedback
signals are effective

- GraphFuzz, go ranks 15,
followed by
GraphFuzz gmgo

- GraphFuzzyone
outperforms
GraphFuzzqgy

Small Initial Corpus Bigger Initial Corpus

none combo algo none | combo algo
Bug-1 35.96 14.92 39.55 4,77 7.79 20.43
Bug-2 2.14 21.21 | 12291 | 11.06 2521 43.86
Bug-3 4.23 5.50 6.58 2.45 6.19 13.85
Bug-4 3.75 17.98 1894 | 11.92 13.27 | 107.51
Bug-5 | 306.69 | 100.84 | 167.43 3.38 3.69 3.71
Bug-6 11.40 1562 26.61 | 3548 732 13.72

TABLE III: Bug discovery speed up (based on the

mean values) of GraphFuzzyong, GraphFuzz ougo, and
GraphFuzz ,; .o Over GraphFuzz .., . The best result for each
bug and corpus is highlighted in bold, while the second-best
result is highlighted in italics.

34

Explanation

Fuzzing throughput Corpus size
none cov combo algo combo algo
STPL; 9153076 42064 55706 102073 1406 2033

SCC | 40967765 55028 76903 170366 7192 9675
MFV 650820 25037 33736 829353 1526 1776
MST | 19977653 43176 73095 182035 | 22787 | 33726

JS 2210589 50368 52263 57900 307 325
MM | 43627857 | 201736 | 230785 | 5136005 112 145
HC | 52783065 42375 79821 113156 5036 6673
AA 375026 51283 53208 57035 1775 2276
BCC | 12266650 52039 79805 | 2061555 412 11

TABLE IV: The mean value of fuzzing throughput (i.e.,
number of graphs generated and evaluated over time) and
corpus size of GraphFuzz in different setups, for each 2-hour
experiment.

RQ-3. Bug finding capability of GraphFuzz,,;,

- Longer runs: 24 hrs

- 16 more graph problems (e.g.,
Dice Similarity, All Node Cut,
Simple Cycle)

- Results:

» 18 additional bugs including 3
logic bugs and 15 crashes

GraphFuzz,, o highly
applicable and effective.
Thus far, we have tested 26
different graph problems,
and our tool has discovered
bugs in 22 of them, resulting
in a success rate of 84.6%.

36

Reading recommendation

Testing Database Engines via Query Plan Guidance

Jinsheng Ba Manuel Rigger
National University of Singapore National University of Singapore

DynSQL: Stateful Fuzzing for Database Management Systems with
Complex and Valid SQL Query Generation

Zu-Ming Jiang Jia-Ju Bai Zhendong Su
ETH Zurich Tsinghua University ETH Zurich

GLeeFuzz: Fuzzing WebGL Through Error Message Guided Mutation

Hui Peng Zhihao Yao Ardalan Amiri Sani Dave (Jing) Tian Mathias Payer
Purdue University UC Irvine UC Irvine Purdue University EPFL

37

Beyond Crash Oracles

RECALL: The Test Oracle problem

“Given an input for a system, the chal
the corresponding desired, correct be
potentially incorrect behavior is callec
problem” [Earl et al. 2015]

enge of distinguishing
naviour from

the test oracle

39

Common solutions

- Human Oracles

- “Explicit” Oracles
» Crashes (e.g., SEGV, ABORT including sanitizer aborts)
» Hangs

- Differential Testing [William M. McKeeman]
- Metamorphic Testing [T.Y. Chen et al.]

40

Differential testing % g

01
}

_ YES/NO?
Input |

02 ‘

41

Do SUT-1 and SUT-2 need to solve
the same problem?

> ‘. 2.
So how does it do it? Well, what we have is we have two guns Alright, because if one

is good then two better
o

/

> Pl ¢ e e @ % [O O

s & CycleGAN - Cmputerphile
§2019 i 37K GP DISLIKE > SHARE | DOWNLOAD ¢ CLIP =+ SAVE ...

Zebras, Hors

111,685 views * Al

42

Metamorphic testing % g

Input i

Relation(o, 0’)

YES/NO?
holds /

Input i’

43

How would you identify metamorphic relations? % g

Q-1) What is the System/Component-Under Test?

Q-2) What transformations can be applied to the inputs? (e.g.,
deletion, semantic-preserving transformations, combination,
addition)

Q-3) Does it exist any relation between o and o’ that should hold on
all pairs (i, i’) where i’ = transformation(i)?

44

Activity: identify metamorphic relations .

Task 1: to test a shortest path finding algorithm
implementation (e.g., Dijkstra algorithm)?

Task 2: to test a C compiler (e.g., Clang/gcc)? %
Task 3: to test an CNN-based image recognition .

system (e.g., used in autonomous cars)? GroUIO.Slze: 4-5
15 minutes

45

Reading recommendation

Metamorphic Testing: A Review of Challenges and

Opportunities

TSONG YUEH CHEN and FEI-CHING KUO,
HUALI LIU, Victoria University

PAK-LOK POON, RMIT University

DAVE TOWEY, University of Nottingham Ningbo Cl
T. H. TSE, The University of Hong Kong

ZHI QUAN ZHOU, University of Wollongong

DeepTest: Automated Testing of
Deep-Neural-Network-driven Autonomous Cars

Yuchi Tian Kexin Pei
University of Virginia Columbia University
yuchi@virginia.edu kpei@cs.columbia.edu
Suman Jana Baishakhi Ray
Columbia University University of Virginia
suman(@cs.columbia.edu rayb@virginia.edu

MANUEL RIGGER, ETH Zurich, Switzerland
ZHENDONG SU, ETH Zurich, Switzerland

Finding Bugs in Database Systems via Query Partitioning

Automated Testing of Graphics Shader Compilers®

ALASTAIR F. DONALDSON, Imperial College London, UK
HUGUES EVRARD, Imperial College London, UK
ANDREI LASCU, Imperial College London, UK

PAUL THOMSON, Imperial College London, UK

46

EDEFuzz: A Web API Fuzzer for Excessive Data Exposures

Lianglu Pan, Shaanan Cohney, Toby Murray, Van-Thuan Pham
lianglup @student.unimelb.edu.au,shaanan @cohney.info, { toby.murray,thuan.pham } @unimelb.edu.au
The University of Melbourne, Melbourne, Australia

ABSTRACT

APIs often transmit far more data to client applications than they
need, and in the context of web applications, often do so over public
channels. This issue, termed Excessive Data Exposure (EDE), was
OWASP’s third most significant API vulnerability of 2019. However,
there are few automated tools—either in research or industry—to
effectively find and remediate such issues. This is unsurprising as
the problem lacks an explicit test oracle: the vulnerability does not
manifest through explicit abnormal behaviours (e.g., program crashes
or memory access violations).

In this work, we develop a metamorphic relation to tackle that chal-
lenge and build the first fuzzing tool—that we call EDEFuzz—to sys-
tematically detect EDEs. EDEFuzz can significantly reduce false neg-
atives that occur during manual inspection and ad-hoc text-matching
techniques, the current most-used approaches.

We tested EDEFuzz against the sixty-nine applicable targets from
the Alexa Top-200 and found 33,365 potential leaks—illustrating
our tool’s broad applicability and scalability. In a more-tightly con-
trolled experiment of eight popular websites in Australia, EDEFuzz
achieved a high true positive rate of 98.65% with minimal configura-
tion, illustrating our tool’s accuracy and efficiency.

e N
“Automatic tools usually can’t detect this type of vulnerability because it’s

hard to differentiate between legitimate data returned from the API, and
sensitive data that should not be returned without a deep understanding
of the application.”

— The Open Web Application Security Project (OWASP)

(& J

“This vulnerability is so prevalent (place 3 in the top 10) because it’s
easy to miss. Automation is near useless here because robots can not tell
what data should not be served to the user without telling them exactly
how the application should work. This is bad because API’s are often
implemented in a generic way, returning all data and expecting the front-
end to filter it out.”

— Wallarm End-to-End API Security Solution
- J

Figure 1: Industry views on the EDEs. These indicate the preva-
lence of EDEs and limitations of existing detection tools

We start with a definition: an API is vulnerable to EDE if it exposes
meaningfully more data than what the client legitimately needs [1].
Consider a simple example of an online storefront. When a user
views the page for a specific product, an API call may be made to

47

Detecting Excessive Data Exposures in Web APIs

Why should we care about excessive data exposures/data leak?

=T » g
_‘u’ "I“ } "\:v:}., N

‘ :{’ o S '\
(,"\""",‘:’“, ',’.l ‘_ a3 21
ey .’3?.*-\3.;:&
T g T —
NN
b

Tony Abbott hacked after posting
boarding pass on Instagram

(® 17 September 2020

A g 2

We're deeply sor
the cyberattack has happened on our watch

For the latest information go to: optus.com.au

= |
COVID TEST |
11OW SICLUNES {

= \! b
= & ;u&u:ng% |

48

What happened?

done
| A Passengers
¥ Flghts | had to use the only hacker tool | know.
Flight details
Passengers X
) Forward
Baggage "
. Manage passenger and contact details. Reload
eats
Save as...
@ Destination - Print...
Passenger detail
assenger details ot
o Click edit to update your booking with dietary requirement requests, contact details or to let us know if you're bringing Translate to English
Print this page any sporting equipment. We may notify you of any updates by email and mobile phone, so ensure both are updated.

View page source

Booking contact Inspect

Alt+Left Arrow
Alt+Right Arrow

Ctrl+R

Ctrl+S
Ctrl+P

Ctrl+U
Ctrl+Shift+l

We're not done just because a web page says we're

| wanted to see if there were juicy things hidden inside the page. To do it | \

apisSectionBean”: { ggg;pg;g"

JBAL_DEFAULT_1","gender":"M","date0fBirth":"04/11/57", "1ssuingCountry": "AU", "documentNumber" ", "expiryDate' 8
se, "15RedressNumberReque stable :false, "1sKnownNumberRequestable":false}, "nationalityAttributes
lue":"", "mancatory”:"N"},"fullName": "Anthony Abbott", "businessPhones”:[],"businessPhonesCount”:@, "homePhonesCount”:9, "mobili

I ——

Details: https://mango.pdf.zone/finding-former-australian-prime-minister-tony-abbotts-passport-number-on-instagram

49

Excessive Data Exposures & Its prevalence

Ranked 3 in OWASP 2019 TOP-10 critical
vulnerabilities in APIs

 The API (e.g., Web API) returns full data objects
as they are stored in the backend database.

* The client application filters the responses and
only shows the data that the users really need
to see.

* Attackers call the API directly and get also the
sensitive data that the Ul would filter out.

“Automatic tools usually can’t detect this type of vulnera-
bility because it's hard to differentiate between legitimate
data returned from the API, and sensitive data that should
not be returned without a deep understanding of the appli-
cation.”

— The Open Web Application Security Project

(OWASP)

| “This vulnerability is so prevalent (place 3 in the top 10) |

because it’s easy to miss. Automation is near useless here
because robots can not tell what data should not be served
to the user without telling them exactly how the application
should work. This is bad because API’s are often imple-
mented in a generic way, returning all data and expecting
the front-end to filter it out.”

— Wallarm End-to-End API Security Solution

Figure 1: Industry views on the EDEs. These indicate the
prevalence of EDEs and limitations of existing detection tools

50

What are the consequences of exposing
excessive data?

- (sensitive) data leakages

- Application performance

- Cost due to higher requirement for bandwidth
- P77

51

Manual Detection?

{"1id":279980, "vin" : "WVWZZZCDZNW001240", "model code":"CD13NS\/22","car_configurator model code":"CD13NS-GPJ3PJ3-GPLAPLA-GPRDPRD-GPZFPZF-GWA3WA3-GWCRWCR-

GWC4WC4", "brand":"Volkswagen", "sub _brand":"PV", "model year":"2022","is freestock":false,"carline model":"Golf", "model variant":"110TSI

Life","model family":"Golf","body type":"Hatch","body type sort order":1,"common color":"Yellow","vehicle type":"New","transmission":"Auto","fuel":"Petrol","driven wheels":"FWD", "dea
ler code":"30281","dealer state":"VIC","dealer postcode":"3875", "mrdp":"46031", "payload":{"vehicle details":{"carline model":"Golf", "model variant":"110TSI

Life","model code":"CD13NS\/22","car configurator model code":"CD13NS-GPJ3PJ3-GPLAPLA-GPRDPRD-GPZFPZF-GWA3WA3-GWCRWCR-

GWC4WC4", "brochure code":"GOLEF", "body shape":"Hatch","model year":"2022","engine capacity":"1.4 TSI","transmission":"Auto","transmission desc":"8-Speed
Automatic","fuel":"Petrol","driven wheels":"FWD", "model family":"Golf","vin":"WVWZZZCDZNW001240","list in stock":true, "common color":"Yellow","color code":"ClCl","vehicle type":"New"
,"vehicle options":"MP,PM, PZC", "customer order status":"5","is freestock":false,"brand":"Volkswagen","sub brand":"PV","demo kilometers driven":null,"demo kilometer updated":null}, "de
fault settings":{"default finance term":"48","default finance pa comparison rate":"8.82","default finance deposit":"10","default finance allowance":"60000","default driveaway disclai
mer":"a4r2e0000007IEWAA2", "default finance disclaimer":"a4r2e0000007I9kARE", "default driveaway legend icon":"~"},"images":{"new":{"hero image listing page":"https:\/\/vga-
images.herokuapp.com\/VICCI\/stock\/image\/WVWZZZCDZNW001240\/right", "hero image detail page":"https:\/\/vga-
images.herokuapp.com\/VICCI\/stock\/image\/WVWZZZCDZNW001240\/front", "gallery": {"front":"https:\/\/vga-

images.herokuapp.com\/VICCI\/stock\/image\/WVWZZZCDZNW001240\/front", "back":"https:\/\/vga-images.herokuapp.com\/VICCI\/stock\/image\/WVWZZZCDZNW001240\ /back","right":"https:\/\/vga-
images.herokuapp.com\/VICCI\/stock\/image\/WVWZZZCDZNW0O01240\/right", "left":"https:\/\/vga-
images.herokuapp.com\/VICCI\/stock\/image\/WVWZZZCDZNW001240\/1left"}}, "demo": {"hero image listing page":"https:\/\/vga-
images.herokuapp.com\/VICCI\/stock\/image\/WVWZZZCDZNW001240\/right", "hero image detail page":"https:\/\/vga-
images.herokuapp.com\/VICCI\/stock\/image\/WVWZZZCDZNW001240\/front", "gallery": {"image0":"https:\/\/vga-
images.herokuapp.com\/VICCI\/stock\/image\/WVWZZZCDZNW001240\/front", "imagel":null, "image2":null, "image3":null, "image4":null, "image5":null}}}, "dealer details":{"dealer code":"30281",
"dealer name":"THE BIG GARAGE VOLKSWAGEN","dealer state":"VIC","dealer postcode":"3875","info":{"dealerName":"THE BIG GARAGE

VOLKSWAGEN", "dealerCode":"30281", "locality" :"BAIRNSDALE", "dealerAddress":"628 PRINCES HIGHWAY,

BAIRNSDALE", "dealerState":"VIC", "dealerPostcode":"3875", "webKey":"", "UsedCarDealer":"False", "PartsAvailable":"True", "PartsPostCode":"3875","SalesPostCode":"3875", "ServicePostCode":"3
875", "PartsStateCode":"VIC", "SalesStateCode":"VIC", "ServiceStateCode":"VIC", "PartsSuberbCode" : "BAIRNSDALE", "SalesSuberbCode" : "BAIRNSDALE", "ServiceSuberbCode" : "BAIRNSDALE", "PartsEmail
Code":"","SalesEmailCode":"","ServiceEmailCode":"", "PartsPhoneCode":" (03) 5152 4131","SalesPhoneCode":" (03) 5152 4131","ServicePhoneCode":" (03) 5152 4131","PartsStreetCode":"628
PRINCES HIGHWAY","SalesStreetCode":"628 PRINCES HIGHWAY","ServiceStreetCode":"628 PRINCES

HIGHWAY", "PartsFaxCode":"","SalesFaxCode":"","ServiceFaxCode":"", "FinanceEmail":"", "ServiceDealer":"True", "phone":"0351525313", "tradingHours": [{"name" :"Sunday", "isclosed":true, "start
Time":"09:00 AM", "endTime":"05:00 PM"}, {"name":"Monday","isclosed":false, "startTime":"08:30 AM","endTime":"05:30 PM"}, {"name":"Tuesday","isclosed":false, "startTime":"08:30

AM", "endTime":"05:30 PM"}, {"name":"Wednesday","isclosed":false, "startTime":"08:30 AM", "endTime":"05:30 PM"}, {"name":"Thursday","isclosed":false,"startTime":"08:30
AM","endTime":"05:30 PM"}, {"name":"Friday","isclosed":false,"startTime":"08:30 AM","endTime":"05:30 PM"}, {"name":"Saturday","isclosed":false, "startTime":"09:00 AM", "endTime":"12:00
PM"}],"publicHolidays":["2018-11-06","2019-03-11","2019-01-28","2019-04-19","2019-04-21","2019-04-22"], "mapLocation":"", "DealerOpTiming": [{"Type":"Parts", "operatingTime":"Mon:0830-
1700, Tue:0830-1700,Wed:0830-1700, Thu:0830-1700,Fri:0830-1700"}, {"Type":"Service", "operatingTime":"Mon:0830-1700,Tue:0830-1700,Wed:0830-1700, Thu:0830-1700,Fri:0830-

1700"}]}},"tile info":{"background color":"#e4d330","font color":"#000"},"careplanData":{"model":"CD13NS\/22", "careplan model code":"CD13NS\/22 CARE PLAN 5","careplan name":"5-Year
Care Plan","term":"60","price inc gst":"2400","price exc gst":"2181.82","Policy Type":"Service Pack"},"optional packages":[{"name":"Metallic

Paint", "code" :"GMPMP", "price":"650"}, {"name" :"Premium Metallic Paint","code":"GPMPM", "price":"900"}, {"name":"Sound & Vision

Package", "code":"GPZCPZC", "price":"1500"}], "optional packages comb string":"Metallic Paint, Premium Metallic Paint, Sound & Vision Package","banner":{"banner heading":"MY22 Finance
Offer","sub_headings":["Free 3 Year\/45,000 KM Care Plan\u2020"],"application":"Offer;Stock","vehicle type":"New", "banner end date":"2022-06-30","banner start date":"2022-04-

01"}, "pcsOfferIds":["a2E990000005AWVEAM"], "offers" : {"Driveaway": {"offer name":"Driveaway~","offer heading 1":null,"offer price":"0","applications":"Offer;Stock","start date":"2022-
04-01","end date":"2022-06-

30", "legend icon":null,"term":null, "pa comparison rate":null,"allowance":null, "deposit required":null,"is deposit in cash":false,"offer type":"Driveaway","disclaimer":"a4r9g00000006n
8AAA", "disclaimerl":null, "disclaimer2":null}},"discalimers": [{"id":"a4r9g00000006n8AAA", "name" :"D-0077", "legend icon":null, "description":"PV MY22 Golf Driveaway

Disclaimer", "disclaimer":"~Manufacturer's recommended driveaway price (MRDP) for new MY22 vehicles in white sold and delivered on or after

01\/06\/2022."}],"dealer comment":null},"last modified date":"2022-04-13 14:05:27","version":238,"status":1,"inserted time":"2022-04-15 02:37:21", "updated time":"2022-04-15
02:37:21","did":"30281","ordering":23}

How can one automatically detect if a web API
exposes more data than it should?

- The question is related to the famous test oracle problem.

- We address this challenge with the following key insight:

» Data returned from an APl endpoint is more likely excessive if it has no
impact on the content displayed to a user.

» This is a metamorphic relation

if a field in a JSON response is not needed,
the rendered webpage should not change if the field is deleted.

53

Workflow of EDEFuzz

Web page ————— ——————i Targeted Web
. (client side) | EDE-Fuzz Server
Three simple steps: () i
1) Save a copy of the rendered HIML | e orgin ,[Web Proxy]< I

</> response

i esponse . .
origin origin

webpage after the API call

|
|
8 | |
2) Try deleting each of the fields [Web e] rewe@ e e s
in the response PR o o] ——
3) Check if the newly rendered ® Pt | Server ®

page is the same as the saved

\l\Af)

DOM_ . .

copy. No change? The data o || oifr. Tool {\ -0
I

Wwds unnecessary %ﬁ/ ! Web
pom_ e ____ | Developer

1
|
|
|
|
|
|
|
|
Simulated :
|
|
|
|
|
|
|

Results & Discussions

Target Data fields Reported Confirmed TP \ Preparation Execution Classification [Sensitive) Non-sensitive
(min) (min) (min)
ComMPANY-A 189 124 124 100.00% 10 11 5 0 124
Comprany-B 18 16 14 87.50% 20 2 2 2 12
Company-C 2600 2580 2504 97.05% 5 306 3 104 2400
CompaNy-D 545 506 479 94.66% 15 43 10 9 470
Company-E 4249 4147 4127 99.52% 10 755 15 0 4127
CompaNY-F 778 749 749 100.00% 15 103 5 0 749
CompaNy-G 120 100 100 100.00% 5 12 3 0 100
Company-H 1465 1066 1066 \.100.00% / 15 79 20 __19 /1047

Table 2: Summary statistics from the Australian sites. Data fields reports the total number of fields contained in the API response of
each target, Reported is the number of fields flagged by EDEFuzz as excessive; Confirmed is the number of fields manually confirmed
to be excessive, i.e. true positives, TP. The time taken to configure EDEFuzz for each target is reported in Preparation, as is the duration
of test execution (Duration) and the human effort required to manually classify the flagged fields as sensitive or not (Classification), all
measured in minutes. We also report (Sensitive) the number of fields we classified as containing sensitive data, after manual inspection.

55

EDEFuzz is now open source at
https://github.com/Broken-Assumptions/EDEFuzz

sone

]y (o

=t

56

Reading recommendation

Toss a Fault to Your Witcher: Applying Grey-box Coverage-Guided Mutational Fuzzing to Detect
SQL and Command Injection Vulnerabilities

Giovani Vignal, mtj;ﬁfﬁf Automated Black-box Testing of Mass Assignment
Vulnerabilities in RESTful APIs

Davide Corradini*, Michele PasquaJr and Mariano Ceccato?
Department of Computer Science

FUZZORIGIN: Detecting UXSS vulnerabilities in Browsers

through Origin Fuzzing

Sunwoo Kim* Young Min Kim Jaewon Hur
Samsung Research Seoul National University Seoul National University
sunwoo28.kim@ samsung.com ym.kim@ snu.ac.kr hurjaewon@ snu.ac.kr
Suhwan Song Gwangmu Lee’ Byoungyoung Lee*
Seoul National University EPFL Seoul National University

sshkeb96 @ snu.ac.kr gwangmu.lee @epfl.ch byoungyoung @snu.ac.kr

57

Beyond The Coverage Plateau

Human-In-The-Loop Fuzzing

1.

How do humans and fuzzing tools communicate?
--- so they can “understand” each other

When should they talk to each other? --- so
humans are not overwhelmed

What humans can help? Can we reuse their
previous suggestions?

How does fuzzing leverage humans’ guidance?

How do we improve the Graphical User Interface
(GUI) to support effective human-fuzzing
interaction?

american fuzzy lop ++3.15a (default) [fast] {-1}
process timing overall results
0 days, O hrs, 3 min, 44 sec 0
0 days, 0 hrs, © min, 2 sec : : 134
none seen yet 0
none seen yet <]
cycle progress map coverage
111.1 (82.8%) E 0.61% / 2.08%
0 (0.08%) 1.44 bits/tuple
stage progress findings in depth
havoc 21 (15.67%)
834/1058 (78.83%) 30 (22.39%)
38.3k 0 (@ unigue)
311.4/sec t t 0 (8 unique)
fuzzing strategy yields path geometry
disabled (default, enable with - 6
disabled (default, enable with - 107
disabled (default, enable with - 5]
disabled (default, enable with - i : 133
WE] : 0
107/23.2k, 25/11.5k " E 100.00%
unused, unused, unused, unused
45.89%/1692, disabled 900%

Call tree

Function coverage

The following is the call tree with color coding for which functions are hit/not hit. This info is based on the co

[\] LLVMFuzzerTestOneInput

function]_[call site

1 GEIACISy[call site
1 ELilaamycall site]

1 gL function) [call site
function] [call site
3 RECILUL R function] [call site
Iy _ ctype_b_loc [pEIEIG
3 RLCCE -l function] [call site
[y _ ctype_tolower_loc [5G
K} pthread_mutex_lock [[=1[ENIC)
3 QEEERLIA ERI T LB function] [call site]
4 LRI SN ELEES Ja b [function] [call site]
5 gLt call site]
4 RN L U EL T function) [call site]

5 IS G function]_[call site

59

What can humans help?

Registered Report: Beyond The Coverage Plateau -
A Comprehensive Study of Fuzz Blockers

Wentao Gao Van-Thuan Pham Dongge Liu
wentaogl@student.unimelb.edu.au thuan.pham@unimelb.edu.au donggeliu@google.com
The University of Melbourne The University of Melbourne Google
Oliver Chang Toby Murray Benjamin I.P. Rubinstein
ochang@google.com tobby.murray@unimelb.edu.au benjamin.rubinstein@unimelb.edu.au
Google The University of Melbourne The University of Melbourne
ABSTRACT published to improve the technique in various aspects [34]. These

Fuzzing and particularly code coverage-guided greybox fuzzing,
has proven highly successful in automated vulnerability discovery,
as evidenced by the multitude of vulnerabilities uncovered in real-
world software systems. However, results on large benchmarks such
as Google FuzzBench indicate that the state-of-the-art fuzzers often
reach a plateau after a certain period, typically around 12 hours.
With the aid of the newly introduced Fuzz Introspector platform,
this study aims to analyze and categorize the fuzz blockers that
impede the progress of fuzzers. Such insights can shed the light
for future research directions in fuzzing, suggesting areas that
require further attention. Our preliminary findings reveal that the
majority of top fuzz blockers are unrelated to the program input,
emphasizing the need for enhanced techniques in automated fuzz
driver generation and modification.

KEYWORDS
fuzzing, vulnerability detection, software security

ACM Reference Format:

Wentao Gao, Van-Thuan Pham, Dongge Liu, Oliver Chang, Toby Murray,
and Benjamin LP. Rubinstein. 2023. Registered Report: Beyond The Coverage
Plateau - A Comprehensive Study of Fuzz Blockers. In Proceedings of ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
2023). ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION

efforts have focused on enhancing fuzzing in areas such as feedback
collections [16, 24, 26, 29], corpus management [28], seed selection
algorithms [21, 22], input generation algorithms [15, 19, 30, 42, 45],
and novel test oracle designs [37, 43]. Additionally, researchers have
attempted to extend the applicability of fuzzing to challenging tar-
gets such as network protocols [17, 41], database systems [43, 48],
SMT solvers [38], compilers [25], device drivers [39], and hetero-
geneous applications [46]. Another noteworthy research direction
is parallel or distributed fuzzing [32, 36, 40], which aims to im-
prove fuzzing efficiency by utilizing high-performance computing
resources.

LhSSm 3n:S0m Sh:aSm a0 Onc3Sm 11re30m 33h:2Sm 1Sh:20m 1Jh:1Sm 18h:10m 21 Sm

* The error bands show the 95% confidence interval around 1he mean code cCoverags,

Figure 1: SBFT’23 Fuzzing Competition result of LibPNG.
Mean branch coverage growth over time is reported. 17 tri-
als/fuzzer, 23 hours per trial. Most fuzzers reach their plateau
after 14 hours.

60

Fuzz blockers analysis

whole-study
classification

D 1 i i i i 1
% @
#

Soure ‘ Y

code I Coverage | | Fuzzing Fuzzing |(|9» ﬁ
Introspector blockers

== report
@

/

Fuzz | /instrumentod
ﬂ'iv%__ binary

analyst

Figure 5: The 4-step workflow to conduct our study. (Step 1 - Manual) Understanding subject program; (Step 2 - Fully Automated
with Fuzz Introspector [5]) Identifying fuzz blockers; (Step 3 - Manual) Analyzing fuzz blockers; (Step 4 - Semi-Automated
using taint analysis) Classifying fuzz blockers. Dashed lines indicate that the steps/flows are optional.

61

Preliminary study & initial results

Function Fury - We have classified the fuzz
Libraries | Size | Functionalities Reachability drivers blockers five types:
Result - Type-1: due to wrong function
LibPNG | 105k | Image processing | 52% 1
iGraph 520k | Graph analysis 25% 11 arguments
OpenSSL | 1570k | Crytography 28% 13 - Type-2: due to missing function
Table 1: Three subject libraries of our preliminary study. call(s)

We report the code size in Lines of Code (LoC) and the func-
tion reachability results are reported by Fuzz Introspector.

- Type-3: due to missing

Code size information is taken from Black Duck Open Hub different order(s) of function
[2], which is a website tracking and comparing open source calls
projects.

- Type-4: due to missing
“extreme” inputs
- 12/12 top fuzz blockers of LibPNG

are input independent
62

AFLNet keeps evolving
https://github.com/aflnet/aflnet

RQ-1. Effectiveness & Efficiency of the new signals

RQ-2. Effectiveness & Efficiency of pure black-box

Mar 2020 May 2024 .
Released on GitHub 800+ stars, 180+ forks fuzz1ng 00%
6. G
%076
I %,
FTP, RTSP + SSH, TLS, SMTP, e(; %e
DTLS, DICOM, DNS, SIP, MODBUS ... o <>,-%°
- How to Hack Medical Imaging
BT et AN 0 Applications via DICOM G. &
i e Modbus va mdt s8 cong cy kiém 6;% 6)%% y 6)% 6%6
The Challenges of Fuzzi - i 6"2, %o % 4"}, %
ges of Fuzzing 56 - A A 2
Protocols LOCK DOWN o v oo% %, e/,.%o "’o% eéio
(o}
Workflow of EDEFuzz Researchers
Three simple steps: I o | -
- |
1) Saveacopyoftherendered ~ GEI} | ‘ot f, .1ttt Students
webpage after the API call ; reepOnSongin response,,,

2) Try deleting each of the fields Web Driver @ <req, resp> pairs

in the response

3) Check if the newly rendered ® §'" Server

page is the same as the saved - & !
DOM,,.., :l] o
i Diff. Tool ‘B-UO/N—; E
reports <>
“"w%

' |

! [

! i

! i

reqy, : !

DOM Extractor °‘fwlw | :
Tog in
P [

Onse Simulated :
atyey |

| :

; I
|

)

i |
|
|
|

copy. No change? The data
was unnecessary | wep
............ eveloper

Melbourne
Fuzzing Hub

63

Industry

