
Beyond the Coverage Plateau: A Comprehensive Study of Fuzz
Blockers (Registered Report)

Wentao Gao
wentaog1@student.unimelb.edu.au

The University of Melbourne
Melbourne, Australia

Van-Thuan Pham
thuan.pham@unimelb.edu.au
The University of Melbourne

Melbourne, Australia

Dongge Liu
donggeliu@google.com

Google
Sydney, Australia

Oliver Chang
ochang@google.com

Google
Sydney, Australia

Toby Murray
toby.murray@unimelb.edu.au
The University of Melbourne

Melbourne, Australia

Benjamin I.P. Rubinstein
benjamin.rubinstein@unimelb.edu.au

The University of Melbourne
Melbourne, Australia

ABSTRACT

Fuzzing and particularly code coverage-guided greybox fuzzing is
highly successful in automated vulnerability discovery, as evidenced
by the multitude of vulnerabilities uncovered in real-world software
systems. However, results on large benchmarks such as FuzzBench
indicate that the state-of-the-art fuzzers often reach a plateau after
a certain period, typically around 12 hours. With the aid of the
newly introduced FuzzIntrospector platform, this study aims to
analyze and categorize the fuzz blockers that impede the progress
of fuzzers. Such insights can shed light on future fuzzing research,
suggesting areas that require further attention. Our preliminary
findings reveal that the majority of top fuzz blockers are not directly
related to the program input, emphasizing the need for enhanced
techniques in automated fuzz driver generation and modification.

CCS CONCEPTS

• Security and privacy → Software security engineering; •
Software and its engineering → Software libraries and reposito-
ries.

KEYWORDS

fuzzing, vulnerability detection, software security
ACM Reference Format:

Wentao Gao, Van-Thuan Pham, Dongge Liu, Oliver Chang, Toby Murray,
and Benjamin I.P. Rubinstein. 2023. Beyond the Coverage Plateau: A Com-
prehensive Study of Fuzz Blockers (Registered Report). In Proceedings of the
2nd International FuzzingWorkshop (FUZZING ’23), July 17, 2023, Seattle, WA,
USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3605157.
3605177

1 INTRODUCTION

Fuzzing, specifically Coverage-Guided Greybox Fuzzing (CGF), has
received significant attention from both industry and academia in re-
cent years due to its simplicity and high performance in automated

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FUZZING ’23, July 17, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0247-1/23/07.
https://doi.org/10.1145/3605157.3605177

vulnerability discovery. Popular CGF Fuzzers such as libFuzzer [8],
AFL/AFL++ [1, 28], and Honggfuzz [6] have discovered thousands
of vulnerabilities in large real-world systems [3, 21, 36].

The state-of-the-art in fuzzing has seen significant advance-
ments, with hundreds of research papers and dozens of tools being
published to improve the technique in various aspects [36]. These
efforts have focused on enhancing fuzzing in areas such as feedback
collection [16, 25, 27, 30], corpus management [29], seed selection
algorithms [22, 23], input generation algorithms [15, 20, 31, 44, 47],
and novel test oracle designs [39, 45]. Additionally, researchers have
attempted to extend the applicability of fuzzing to challenging tar-
gets such as network protocols [18, 43], database systems [45, 50],
SMT solvers [40], compilers [26], device drivers [41], and hetero-
geneous applications [48]. Another noteworthy research direction
is parallel or distributed fuzzing [33, 38, 42], which aims to im-
prove fuzzing efficiency by utilizing high-performance computing
resources.

Figure 1: SBFT’23 Fuzzing Competition [35] result of LibPNG.

Mean branch coverage growth over time is reported. At least

20 trials/fuzzer, 23 hours per trial. Most fuzzers reach their

plateau within 14 hours.

Despite these advancements, the top-performing fuzzers con-
tinue to exhibit limitations as evidenced by results obtained from
FuzzBench [37] and FuzzIntrospector [5]. As shown in Figure 1,
all fuzzers participated in the recent SBFT Fuzzing Competition
[35] reached their plateau after testing the popular LibPNG library
[9] for 14 hours, with little to no further improvement in code cov-
erage. We have observed similar trajectories in other benchmarked
programs.We need a better understanding of why this happens.

https://doi.org/10.1145/3605157.3605177
https://doi.org/10.1145/3605157.3605177
https://doi.org/10.1145/3605157.3605177


FUZZING ’23, July 17, 2023, Seattle, WA, USA Wentao Gao, Van-Thuan Pham, Dongge Liu, Oliver Chang, Toby Murray, and Benjamin I.P. Rubinstein

This study aims to conduct a comprehensive investigation of
well-tested subject programs to identify and classify the fuzz block-
ers that impede the progress of fuzzers. The results of our analysis
could serve as a valuable resource for future fuzzing research, pro-
viding guidance on how to (i) develop innovative approaches to
address previously unknown types of blockers, (ii) allocate more re-
sources towards important but under-explored research areas (e.g.,
automated fuzz driver generation [19, 32], configuration fuzzing
[49]), or (iii) re-evaluate and re-design existing solutions for well-
studied blockers such as magic numbers and checksums if they still
persist.

To achieve the generality of our study findings, we have estab-
lished a set of selection criteria to choose subject libraries/programs
based on factors such as their popularity, their code size, their di-
versity in application domains, and the number of existing fuzz
drivers. Using these criteria, in this preliminary study, we have
chosen three widely-used and well-tested libraries–LibPNG [9],
iGraph [7], and OpenSSL [12]–as our subject libraries. All of these
popular programs are included in the OSS-Fuzz project [13] and
are frequently subjected to large-scale fuzzing.

To analyze the fuzz blockers in these projects, we conducted
analyses based on the results obtained from FuzzIntrospector
[5], a recently introduced introspection framework. Despite our
limited number of subject programs, this preliminary study has
already yielded intriguing insights. For instance, we discovered that
100% of the top fuzz blockers in LibPNG are input independent. This
implies that extending the fuzzing time will not necessarily cover
these blockers; rather, we may need to develop new fuzz driver(s)
or modify the existing one(s) to effectively remove them.

In this study, we aim to answer the following research questions.
• RQ1.What types of fuzz blockers have been found in this
study?

• RQ2. What makes these fuzz blockers challenging for the
current fuzzers?

The remainder of this paper is structured as follows. In Section 2,
we give an introduction of coverage-guided greybox fuzzing and
a motivating example. In Section 3, we describe the design of our
study. In Section 4, we share our preliminary results. In Section 5, we
share our plan for a full study. We discuss related work in Section 6
before concluding the paper in Section 7.

2 BACKGROUND AND MOTIVATING

EXAMPLE

2.1 Background of Coverage-Guided Greybox

Fuzzing

Fuzzing is an automated process of repeatedly and intelligently
generating “random" inputs (i.e., test cases) and feeding them to the
system under test (SUT) to cover more lines of code and discover
bugs [36]. Figure 2 shows the commonworkflow of coverage-guided
fuzzing (CGF), which is considered the most scalable and effective
fuzzing approach nowadays. Given a program under test (PUT)
(e.g., a PDF Reader utility), and a seed corpus of sample program
inputs (e.g., PDF files), a CGF fuzzer will (1) select a sample input
from the corpus, and then (2) mutate/modify it to generate many
new inputs/files, before (3) sending them to the PUT and observing

PUT’s behaviours. If the newly generated input triggers new PUT’s
behaviours (e.g., covering a new branch on the control flow graph),
the CGF fuzzer will (4) insert that input/file into the seed corpus for
further cycles of fuzzing. If some abnormal behaviour is detected—
by the crash/bug detection component—the fuzzer will (5) keep the
bug-triggering input and prepare a report for further analysis and
bug fixing. This loop of five steps will repeat until some specified
timeout is reached or the developers/testers decide to stop the
fuzzing process. Throughout this process, bugs are detected, and
the seed corpus is enlarged to cover more code of the PUT.

Program Under 
Test (PUT)CGF Fuzzer

Seed Corpus

1

Bug-triggering
inputs

…

…

Bug Detector

Coverage Bitmap

2 3

4

5

Figure 2: The common 5-step workflow of Coverage Guided

Greybox Fuzzing

Note that the program under test in this workflow can be a com-
plete program (e.g., a PDF Reader utility) or a so-called fuzz driver.
A fuzz driver is a program which can execute library functions
by feeding them with inputs provided by the fuzzer. In practice,
fuzz drivers are mainly written by security experts. However, many
fuzz drivers (e.g., for the Chromium project 1) have been written
by developers. In the scope of this study, since we are analyzing
popular software libraries, fuzz drivers are our main focus.

2.2 Introduction to Fuzz Introspector

FuzzIntrospector [5] is a pretty new yet very effective tool that
is designed to help fuzzer developers get a better understanding
of their fuzzer’s performance and identify any potential blockers.
FuzzIntrospector aggregates information like code coverage, hit
frequency, entry points etc based on both static analysis passes and
dynamic runtime information to give the developer a "birds eye
view" of their fuzzer and the in-use fuzz driver(s). Using this toolset,
developers have successfully improved coverage achievement and
bug found in several case studies such as Xpdf, jsonnet, file, and
bzip2 [14].

FuzzIntrospector reports results, including fuzz blockers, for
each fuzz driver. It reports the top 12 fuzz blockers based on sev-
eral metrics such as “non-covered complexity", “unique reachable
functions", and “all reachable complexity".

1https://github.com/chromium/chromium

https://github.com/chromium/chromium


Beyond the Coverage Plateau: A Comprehensive Study of Fuzz Blockers (Registered Report) FUZZING ’23, July 17, 2023, Seattle, WA, USA

Figure 3: A sample fuzz blocker in LibPNG reported by

FuzzIntrospector. The function png_handle_unknown is

not reached and so are its callees.

2.3 Motivating Example: A Challenging Fuzz

Blocker in LibPNG

Portable Network Graphic (PNG) is a popular image format. It starts
with a short header of 8 bytes followed by a series of chunks, each
of which conveys certain information about the image. There are
mandatory chunks (e.g., IHDR, IDAT, IEND) and optional chunks
(e.g., tRNS). LibPNG [9] is the official reference library for PNG
images. It supports almost all PNG features and has been exten-
sively tested for over 23 years. In current fuzzing setup for LibPNG,
it has only one fuzz driver named libpng_read_fuzzer. This fuzz
driver follows the instructions in the library’s manual [10] to read
a given PNG file sequentially using functions such as png_read_info,
png_get_IHDR, transformation functions (e.g., png_set_gray_to_rgb,
png_set_tRNS_to_alpha), png_read_row, and png_read_end.

FuzzIntrospector ran an analysis on LibPNG using a large
seed corpus that was generated after 6+ years of fuzzing LibPNG
on OSS-Fuzz [13]. Several CGF fuzzers have been used to fuzz the
library such as AFL, Honggfuzz, and libFuzzer. FuzzIntrospec-
tor reported 12 fuzz blockers with this fuzz driver and we discuss
here an interesting one, as shown in Figure 4.

Figure 4: A sample fuzz blocker in LibPNG. The highlighted

code has not executed because with the existing fuzz driver,

the function png_chunk_unknown_handling returns zero

for all the inputs in the corpus.

In this example, the highlighted piece of code has not been
executed because the function png_chunk_unknown_handling re-
turns zero for all test inputs generated so far. After following our
analysis workflow (Section 3), we conclude the root cause is that

the fuzz driver being analyzed does not set the list of accepted
unknown data chunks and corresponding call-back functions to
handle them. To overcome this blocker, only generating more in-
puts does not help; we need to update the fuzz driver to call the
png_set_keep_unknown_chunks function. However, without hav-
ing a deep understanding of the library, it is more challenging than
it sounds. We need to add this missing function call with valid
arguments (i.e., valid supported unknown chunks and handling
functions) to it. It could be even more challenging for an automated
fuzz driver generation approach like fudge [19] or FuzzGen [32].

Interestingly, we have also noticed that from LibPNG v1.6.0, the
library supports a simplified API which hides the details of both
LibPNG and the PNG file format itself and if a developer uses this
API, the function png_set_keep_unknown_chunks will be automat-
ically invoked with some correct arguments. It means that another
option for us to overcome this fuzz blocker is to write a completely
new fuzz driver that reads a given PNG image using the simplified
API. If we want to do it automatically using fudge [19], it may be
out of their reach because there is no existing “consumer" code for
this API—which is required by the tool—in the LibPNG codebase,
to the best of our knowledge. In theory, FuzzGen [32], might help;
however, FuzzGen currently only supports some specific types of
libraries (e.g., libraries in the Android framework)2.

We have confirmed our finding by writing a new fuzz driver
using the simplified API and the result shows that it successfully
uncovered this specific fuzz blocker.

3 STUDY DESIGN

In this section, we discuss the subject selection criteria for our study
and a generic workflow that can be applicable to any library.

3.1 Subject Selection

We select software libraries based on their popularity, code size,
their diversity in application domains, and the number of exist-
ing fuzz drivers. Since we use FuzzIntrospector [5] to identify
fuzz blockers, the selected libraries must also be supported by the
framework. Moreover, we will only focus on libraries that have
low or medium (less than 80%) function reachability and coverage
achievement, as reported by FuzzIntrospector. We argue that
these are more interesting compared to libraries in which fuzzers
have already achieved high reachability and cover most of the code-
base.

• C1-Popularity. For this, we only consider libraries that
have been integrated into the OSS-Fuzz fuzzing platform. It
ensures that the libraries are popular and worth analyzing.
Moreover, since OSS-Fuzz continuously runs fuzz testing on
the libraries, the identified fuzz blockers are more appropri-
ate.

• C2-Code Size. Since the analysis requires substantial man-
ual human effort, we focus on medium-size libraries to make
the task feasible.

• C3-Diversity. The selected libraries should be in different
domains. They could share some common properties but all
should not be of the same types, e.g., chunk-based file pro-
cessing libraries (LibPNG, LibJpeg). Moreover, they should

2https://github.com/HexHive/FuzzGen/issues/18

https://github.com/HexHive/FuzzGen/issues/18


FUZZING ’23, July 17, 2023, Seattle, WA, USA Wentao Gao, Van-Thuan Pham, Dongge Liu, Oliver Chang, Toby Murray, and Benjamin I.P. Rubinstein

Fuzzing
Introspector

Soure
code

Fuzz 
drivers

seed 
corpus

Fuzzer Fuzzing
blockers

analyst

Coverage 
report

Docs

Type N

Type 1

Type 2

Type 3

…instrumented 
binary

1

whole-study 
classification

2

3
4

Figure 5: The 4-step workflow to conduct our study. (Step 1 - Manual) Understanding subject program; (Step 2 - Fully Automated

with Fuzz Introspector [5]) Identifying fuzz blockers; (Step 3 - Manual) Analyzing fuzz blockers; (Step 4 - Semi-Automated

using taint analysis) Classifying fuzz blockers. Dashed lines indicate that the steps/flows are optional.

not only do input parsing; some core algorithms are required
(e.g., graph processing and cryptography algorithms).

• C4-Fuzz Drivers.We should include both libraries that have
only one fuzz driver (e.g., in the case of LibPNG) and libraries
that have several fuzz drivers (e.g., iGraph, OpenSSL). This
allows us to analyze cases in which developers are aware of
the importance of having more fuzz drivers.

Based on these criteria, in this preliminary study, we have selected
three popular libraries LibPNG, iGraph, and OpenSSL. These li-
braries have been fuzzed in several years on the OSS-Fuzz platform
with AFL/AFL++, Honggfuzz, and libFuzzer3.

Table 1 shows the details of these libraries. LibPNG is the refer-
ence library handling the PNG file format. iGraph is a collection of
network analysis tools with an emphasis on efficiency, portability
and ease of use. OpenSSL is a software library for applications that
provide secure communications over computer networks against
eavesdropping or the need to identify the party at the other end. It
is widely used by Internet servers, including the majority of HTTPS
websites.

Table 1: Three subject libraries of our preliminary study. We

report the code size in Lines of Code (LoC) which is taken

from Black Duck OpenHub [2]. Function reachability results

are reported by FuzzIntrospector.

Libraries Size Functionalities
Function
Reachability
Result

#Fuzz
drivers

LibPNG 105k Image processing 52% 1
iGraph 520k Graph analysis 25% 11
OpenSSL 1570k Cryptography 28% 13

The single fuzz driver in LibPNG tests the core steps to read a
PNG image sequentially. The iGraph library has 11 fuzz drivers in
3For each project, OSS-Fuzz stores a project.yaml file listing project-specific informa-
tion and active fuzzers (e.g., AFL, libFuzzer.

total: 8 of them test parsing functions for different graph formats
(e.g., UCINET DL 4, edge list, GML 5, GraphML 6, pajek 7) and
3 of them test graph algorithms such as edge connectivity and
vertex separator. The OpenSSL library has 13 fuzz drivers in total:
2 of them test client and server implementations using LibSSL, 3
of them test non-protocol-related components in the LibCrypto
(e.g., big number calculations, big number division), and 8 of them
test protocol-related components in LibCrypto (e.g., ASN1, ASN1
parsing, x509). This shows the diversity of the fuzz drivers under
analysis, satisfying both criteria C3 and C4.

3.2 Analysis Workflow

We design a 4-step workflow to conduct our study as shown in
Figure 5. The workflow involves both automated and manual tasks.

3.2.1 Step-1. Understanding the subject program. It is worth
noting that this step is optional. If the analyst is the main developer
of the project, it can be skipped. In this step, the analyst reads the
available documentations and the structure of the source code to
get a high-level understanding of the library under analysis. For
instance, in the case study on LibPNG, we relied on the book “PNG:
The Definitive Guide” and the library manual [10]. In the case of
iGraph and OpenSSL, we focused on their available architectures
and manual pages. The analyst should also analyze graphs like
function call graphs, and intra-procedural control flow graphs to
get a better understanding of the subject program.

In this preliminary study, since function call graphs of these
libraries are quite dense, it is hard for us to analyze them. We
believe that having a high-level structural representation of the
library under analysis would be really helpful. While UML diagrams
like class diagram or package diagrams could be helpful, these are
rarely available in open-source libraries supported by OSS-Fuzz.
We believe that a module dependency graph—in which functions of
4https://gephi.org/users/supported-graph-formats/ucinet-dl-format/
5https://gephi.org/users/supported-graph-formats/gml-format/
6http://graphml.graphdrawing.org/
7https://gephi.org/users/supported-graph-formats/pajek-net-format/

https://gephi.org/users/supported-graph-formats/ucinet-dl-format/
https://gephi.org/users/supported-graph-formats/gml-format/
http://graphml.graphdrawing.org/
https://gephi.org/users/supported-graph-formats/pajek-net-format/


Beyond the Coverage Plateau: A Comprehensive Study of Fuzz Blockers (Registered Report) FUZZING ’23, July 17, 2023, Seattle, WA, USA

the same source file should be grouped—seems suitable. However,
to the best of our knowledge, there are no such tools available yet.
We plan to develop one and share it with the community as a side
product of our study.

3.2.2 Step-2. Identifying fuzz blockers. In this step, we use
FuzzIntrospector [5] (Section 2). However, technically any tools
or algorithms that are capable of identifying fuzz blockers should
fit this workflow. If the analyst does not introduce new fuzz dri-
vers, they can rely on the online FuzzIntrospector’s reports for
OSS-Fuzz projects, including our three libraries. These reports are
periodically generated. If the analyst writes new fuzz driver(s), they
would need to re-run FuzzIntrospector to get updated results.

3.2.3 Step-3. Analyzing fuzz blockers. There could be several
fuzz drivers for one library, and currently FuzzIntrospector pro-
duces one report for each fuzz driver. Due to that, the analyst should
first identify unique fuzz blockers to avoid duplicate works. We
have sent a request to the FuzzIntrospector team to generate
an aggregated report for all fuzz drivers along with the individual
report. It could also reduce the chance of having “false positives".
During our analysis of iGraph, we noticed that FuzzIntrospector
reported several blockers (e.g., due to the missing attribute tables
for edges and vertices) in some fuzz drivers even though these
had been covered by other fuzz drivers. If we had an aggregated
coverage report for all fuzz drivers, it would not be an issue.

For each unique fuzz blocker, we adopt a step-by-step approach
to delve deeper into the source code. Unreachable sections of code
can have various levels of depth, so our aim is to progressively
investigate further in order to pinpoint the exact cause of the fuzz
blocker. To illustrate this, let’s consider the code snippet ‘if (A !=
0)’. Initially, at the surface level, we can determine that A is never
equal to 0. However, by delving deeper into the code, specifically
to the point where A is defined, we will analyze which function
modifies A to make it non-zero. Subsequently, we will examine why
this particular function is consistently invoked during the fuzzing
process, and so on. Through this iterative process, we will gradually
approach the true root cause.

For instance, in the case of the motivating example in Section
2, we first tried to answer the question “Why was the function
png_handle_unknown not executed?". Once we know that it was
because the function png_chunk_unknow_handling always re-
turns zero in this fuzz driver, we asked ourselves the next ques-
tion “Why does this function always return zero in this context?”
and so on until we knew that the root cause was the function
png_set_keep_unknown_function was not included in the fuzz
driver.

3.2.4 Step-4. Classifying fuzz blockers. We aim to classify the
fuzz blockers in such a way that we can map them to existing or
potential solutions.

To that end, we first divide the fuzz blockers into two groups:
input-dependent (a.k.a tainted) blockers and input-independent
blockers because the approaches to tackle them are fundamentally
different. For input-dependent fuzz blockers (e.g., comparisons with
magic numbers, complicated branch conditions) we could improve
the core components of the fuzzer itself (e.g., the seed selection
algorithm, energy scheduling, mutation operators). However, for

input-independent blockers, we must either update the existing
fuzz driver or create a new one.

To confirm if a blocker/blocking condition is tainted or not, we
use the LLVM Data Flow Sanitizer (DFSan) [4]. We chose DFSan
instead of other taint analysis engines because it is LLVM-based
and hence could be integrated into FuzzIntrospector more easily.

Once we have classified a blocker as input-dependent or input-
independent, we will further classify it based on the actual root
cause. For instance, if a blocker is input-independent, the root cause
could be that the code is controlled by some missing function ar-
guments, some settings, or the code is executed only if a specific
function/list of functions are invoked. We report our initial clas-
sification based on the analyses of the three selected projects in
Section 4.

It is worth noting that there exist blockers/blocking conditions
that are composite conditions in which some predicates are input
dependent and some predicates are input independent. To make
it less ambiguous, in the scope of this study, we analyze the root
cause of the blocker and if the main blocking predicate is input
independent, we consider that the blocker is input independent.

4 PRELIMINARY RESULTS

Following the study design and the 4-step workflow presented in
Section 3, we have analyzed 12/12 (100%) fuzz blockers in LibPNG8,
132/132 (100%) fuzz blockers in iGraph9, and 34/156 (21.8%) fuzz
blockers in OpenSSL10. After doing deduplication (Step 3), we ana-
lyzed 22 unique fuzz blockers in iGraph. It took the first author—
who has a Master’s degree in Information Technology and had no
prior knowledge of the implementation of the selected libraries—
three months working part-time (4 hours a day) to complete the
analyses with support and guidance from other co-authors.

It is worth noting that we have not completed analyzing all
the fuzz blockers in OpenSSL because of the following reasons.
First, this is the largest project in our benchmarks with 1.57MLoC.
Second, there are some errors in FuzzIntrospector, leading to
incorrect or incomplete results. Notably, FuzzIntrospector in-
correctly pointed us to the code of OpenSSL v3.0 while we were
analyzing fuzz blockers of OpenSSL v1.1.0 and vice versa. Moreover,
possibly due to indirect calls and jumps, the static graphs based on
which FuzzIntrospector generated the reports are less complete,
compared to the other two libraries, making it harder to analyze.
We have reported the issues to the FuzzIntrospector team and
the team has confirmed some of the issues11.

Because of these reasons, for this registered report, we decide to
use the results from our analyses for LibPNG and iGraph libraries
to answer the research questions.

8We analyzed the report generated by FuzzIntrospector on 11th Jan 2023. Access
link: https://storage.googleapis.com/oss-fuzz-introspector/libpng/inspector-report/
20230111/fuzz_report.html
9We analyzed the report generated by FuzzIntrospector on 12th Feb 2023. Access
link: https://storage.googleapis.com/oss-fuzz-introspector/igraph/inspector-report/
20230212/fuzz_report.html
10We analyzed the report generated by FuzzIntrospector on 2nd Feb 2023. Access
link: https://storage.googleapis.com/oss-fuzz-introspector/openssl/inspector-report/
20230202/fuzz_report.html
11https://github.com/ossf/fuzz-introspector/issues/967

https://storage.googleapis.com/oss-fuzz-introspector/libpng/inspector-report/20230111/fuzz_report.html
https://storage.googleapis.com/oss-fuzz-introspector/libpng/inspector-report/20230111/fuzz_report.html
https://storage.googleapis.com/oss-fuzz-introspector/igraph/inspector-report/20230212/fuzz_report.html
https://storage.googleapis.com/oss-fuzz-introspector/igraph/inspector-report/20230212/fuzz_report.html
https://storage.googleapis.com/oss-fuzz-introspector/openssl/inspector-report/20230202/fuzz_report.html
https://storage.googleapis.com/oss-fuzz-introspector/openssl/inspector-report/20230202/fuzz_report.html
https://github.com/ossf/fuzz-introspector/issues/967


FUZZING ’23, July 17, 2023, Seattle, WA, USA Wentao Gao, Van-Thuan Pham, Dongge Liu, Oliver Chang, Toby Murray, and Benjamin I.P. Rubinstein

4.1 RQ1. Types of fuzz blockers

Based on our analysis, 61.7% of fuzz blockers in LibPNG and iGraph
are not input dependent (i.e., not tainted). We have used DFSan as
a taint analysis tool to confirm all cases in LibPNG but have not
done so for iGraph because of some compilation issues.

In the case of LibPNG, we manually annotated the fuzz driver
to taint all bytes in the input buffer (using the dfsan_set_label
function) and added checks to the blocking predicates (using the df-
san_get_label function). If the label at a predicate is zero, it indicates
that the predicate is not tainted. Otherwise, it is tainted. After that,
we compiled the annotated fuzz driver and the annotated LibPNG
source code before executing the binary with the given seed corpus.
Like other taint analysis engines, DFSan could also face the issues
of under-tainting and over-tainting, leading to potentially incorrect
results. However, we use it in a best-effort manner. Technically, the
annotation can be automated since FuzzIntrospector gives us all
the details (e.g., line number) of each fuzz blocker. We can then just
write an LLVM instrumentation pass to complete the task.

Figure 6: A cope snippet that enables several transformations

in the sole fuzz driver of LibPNG.

4.1.1 Input-independent fuzz blockers (61.7% overall, LibPNG: 12/12,
iGraph: 9/22). We further classified these 21 fuzz blockers into dif-
ferent types and sub-types based on their root causes (following
the guideline in Step-4 in our presented workflow).

• Type-1. Fuzz blockers due to wrong function argu-

ments. We have encountered several instances, particularly
within the iGraph library, where the fuzz driver(s) solely
incorporate function calls utilizing default or fixed argument
values (e.g., NULL, TRUE/FALSE). Consequently, the corre-
sponding sections of code responsible for handling alterna-
tive argument values remain unexecuted. As an illustration,
the fuzz driver employed in testing the vertex separator al-
gorithm of iGraph exclusively employs a directed graph as
an argument, thereby obstructing the execution of functions
designed for undirected graphs.

• Type-2. Fuzz blockers due to missing function call(s).

This type of fuzz blockers refers to the cases in which a
function is completely missing in the fuzz driver. We further
divide them into four more sub-types.
– Type-2.1. Missing calls to overloading functions. In
this sub-type, the fuzz driver under analysis does call a
specific version of a function but it does not call its variants
or overloading functions (e.g., functions with the same
name but having different arguments). For instance, in the
fuzz driver that tests the edge connectivity algorithm of
iGraph, one function is called in which other calculations

inside themaxflow algorithm are disabled. In the same fuzz
driver, a specific function is used in which the calculation
inside the minimum cut algorithm is not reachable.

– Type-2.2.Missing repeated function calls. For instance,
in LibPNG, we have identified a specific fuzz blocker that is
only uncovered if the initialization function is called twice.
However, it is not the case because the fuzz driver was
written just to test the normal image reading procedure.

– Type-2.3. Missing function calls to change library

settings. We have noticed several cases, especially in the
LibPNG library, in which some transformation code is
only executed if some bit has been set in the configuration
and the bit is input-independent; it must be set by some
function as shown in Figure 6. Suppose we want to test the
code for RGB-to-Gray transformation, we should update
the fuzz driver12 to call the png_set_rgb_to_gray function.

– Type-2.4. Missing function calls to support more fea-

tures. This sub-type is quite similar to Type-2.3. However,
the difference is that those missing function calls do not
change any settings. Instead, they support new features.
For instance, in the motivating example described in Sec-
tion 2, the fuzz driver misses a function to set up the
handling code for some supported unknown chunks.

• Type-3. Fuzz blockers due to missing different order(s)

of function calls. This type of blocker is interesting. For
instance, we have noticed a fuzz blocker in LibPNG that is
related to an error-handling piece of code. This can only be
executed if the user of the library calls some functions in an
unexpected order. Obviously, it is not the case in the existing
fuzz driver so the code was not executed, no matter how
long we run a fuzzing campaign.

• Type-4. The blocked code is not reachable. We have
analyzed the fuzz blockers of iGraph and noticed two inter-
esting blockers. They are placeholders for handling errors
when using the iGraph’s R interface. However, it would
never be executed because the R interface sets its own error
handlers.

4.1.2 Input-dependent fuzz blockers (9% overall, LibPNG: 0/12, iGraph:
3/22).

• Type-5: Fuzz blockers due to missing “extreme” inputs.

All three blockers of this type are in iGraph. The library has
error handling code for extreme cases such that the number
of edges or the number of vertices exceeds some limit.

There are a few blockers in iGraph that could be considered
input dependent or input independent. They are blocking the code
that handle memory allocation failures which could happen because
of some system error13 or because of the input (e.g., input value
leading to large memory requests).

Moreover, we have identified three blockers in iGraph that could
be considered false positives because the blocked code was cov-
ered by other fuzz drivers. It demonstrates the need of having an
aggregated report in FuzzIntrospector.

12https://github.com/glennrp/libpng/blob/libpng16/contrib/oss-fuzz/libpng_read_
fuzzer.cc
13https://stackoverflow.com/questions/18684951/how-and-why-an-allocation-
memory-can-fail

https://github.com/glennrp/libpng/blob/libpng16/contrib/oss-fuzz/libpng_read_fuzzer.cc
https://github.com/glennrp/libpng/blob/libpng16/contrib/oss-fuzz/libpng_read_fuzzer.cc
https://stackoverflow.com/questions/18684951/how-and-why-an-allocation-memory-can-fail
https://stackoverflow.com/questions/18684951/how-and-why-an-allocation-memory-can-fail


Beyond the Coverage Plateau: A Comprehensive Study of Fuzz Blockers (Registered Report) FUZZING ’23, July 17, 2023, Seattle, WA, USA

It is interesting that no fuzz blockers under our analyses are
due to magic number comparisons, which is a well-known type
of blocker for fuzzing14. It could mean that the current fuzzers
can handle them well. However, we also think about other poten-
tial reasons. First, FuzzIntrospector only reports the top 12 fuzz
blockers so we may see other blockers–some could be relevant
to magic numbers or checksums–after uncovering the top ones.
Second, due to the current implementation, FuzzIntrospector
might miss some blockers. Specifically, to identify fuzz blockers for
a specific library L, FuzzIntrospector uses the L’s coverage report
obtained by running all inputs in its corpus and FuzzIntrospector
does not distinguish between the initial seeds (e.g., some sample
valid PNG files) and fuzzing-generated inputs. There could exist
constraints/predicates that are only satisfied by initial seeds but
FuzzIntrospector does not report them as fuzz blockers. We plan
to discuss with FuzzIntrospector’s team and investigate those
cases further in our full study.

4.2 RQ2. What makes them challenging?

Table 2: A mapping from types of fuzz blockers to potential

solutions.

Type Potential Solution Existing work

Type-1 Automated Fuzz Driver Generation [19, 32]
Type-2 Automated Fuzz Driver Generation [19, 32]
Type-3 Automated Fuzz Driver Generation [19, 32]
Type-4 Unknown N/A
Type-5 Structure-aware Fuzzing [11, 15, 44, 47]

In Table 2 we show a mapping from different types of fuzz block-
ers to potential solutions.We are not aware of any existing solutions
for Type-4 blockers and we are not 100% sure if this type of blocker
should be addressed because the blocked code is just some place-
holder. Regarding other types, in theory, Type-1,2,3 blockers can be
addressed by existing automated fuzz driver generation approach
and Type-5 blockers can be addressed by structure-aware fuzzers.
However, there are several challenges.

First, the research topic of automated fuzz driver generation is
under-explored and the existing tools are either closed-source (as
in the case of fudge [19]) or do not support all popular libraries
out-of-the-box (as in the case of FuzzGen [32]). Moreover, the
search space for those tools is huge. The algorithm needs to take
into account the validity of functions, their arguments, the order in
which those functions should be called, and their dependencies on
program states etc.

With regards to Type-5 blockers, tools like AFLSmart [44] and
Libprotobuf-mutator [11] could technically be helpful. However,
since the limits on the number of edges or vertices can be sig-
nificantly large, requiring input graphs much larger than usual,
current fuzzing algorithms may ignore them in order to maintain
efficiency. This issue could be addressed by updating the fitness
function and/or the test generation algorithms.

14Approaches like RedQueen [17] have produced great results in handling magic
numbers and checksums

5 PLAN FOR A COMPLETE STUDY

We have presented the results of our preliminary study mainly on
two popular libraries LibPNG and iGraph.

In order to complete the full study and prepare it for a TOSEM
journal submission, we intend to expand our research in terms of
scope and depth. Our primary objective is to increase the number of
subjects included in the study, adhering to our established selection
criteria. To make the study feasible, we plan to complete the analy-
ses for OpenSSL and add five more subjects. So the total number
of subject libraries in our full study is eight (8). Furthermore, we
aim to conduct a more comprehensive investigation for LibPNG
particularly. While our current study primarily analyzed 12 top-
level fuzz blockers reported by FuzzIntrospector, we recognize
the value in conducting a layered analysis that aims to uncover
solutions for nearly all encountered blockers. This approach would
provide valuable insights into the progressive unblocking of fuzzing
blockers, contributing to a more comprehensive understanding of
the subject matter.

Reproducibility: To support future research on fuzzing, we
will make the artifacts of our study available at https://github.com/
MelbourneFuzzingHub/ fuzz_blockers.

6 RELATEDWORK

To the best of our knowledge, once fully completed, this study will
represent the first semi-automated and comprehensive examina-
tion of fuzzing blockers across multiple well-tested open-source
projects. Our research aims to address a significant gap in the exist-
ing literature.

Among the closely related works, a notable study was done
by Liang et al. [34]. However, it is important to note that their
analysis was conducted in a fully manual manner and focused solely
on a specific industry library. In contrast, our study endeavors to
encompass a broader range of open-source projects, employing
semi-automated techniques to explore and understand the various
fuzz blockers.

Another line of research that is related includes reflections on
fuzzing [21] and review papers [36]. Although these works pri-
marily summarize the state-of-the-art in fuzzing and propose fu-
ture research directions, they do not delve into analyzing the root
causes that impede state-of-the-art fuzzers from surpassing the cov-
erage plateau. In contrast, our study specifically aims to investigate
and classify the root causes of fuzz blockers, with the objective
of enabling fuzzers to make further progress beyond their current
capability.

Studies that analyze and classify bug/vulnerability types [24, 46]
also bear relevance to our research. However, it is important to
note that their primary objective is to investigate the root causes
of bugs and vulnerabilities once they have been identified. Essen-
tially, these studies focus on the “knowns”. In contrast, our study is
centered around exploring the root causes of fuzz blockers, which
hinder the progress of fuzzers. By doing so, we aim to shed light
on the “unknowns” factors that impede the efficacy of fuzzers and
subsequently enable further advancements in the field.

The fuzzing research community has proposed several novel
ideas to improve the effectiveness and efficiency of fuzzing in the

https://github.com/MelbourneFuzzingHub/fuzz_blockers
https://github.com/MelbourneFuzzingHub/fuzz_blockers


FUZZING ’23, July 17, 2023, Seattle, WA, USA Wentao Gao, Van-Thuan Pham, Dongge Liu, Oliver Chang, Toby Murray, and Benjamin I.P. Rubinstein

past few years [15, 22, 23, 27, 43, 44, 47]. While they focus on im-
proving and addressing some specific challenges, we aim to build a
high-level view of all the fuzz blockers.

7 CONCLUSION

In this registered report, we have emphasized the significance of
conducting a comprehensive study to investigate the underlying
factors contributing to the lack of progress exhibited by state-of-
the-art fuzzers after reaching their plateau. Such an investigation
holds the potential to illuminate new research avenues in the field
of fuzzing, providing valuable insights and directing researchers
towards under-explored areas. Our preliminary findings, derived
from an examination of three popular libraries (LibPNG, iGraph,
and OpenSSL), indicate that a significant number of fuzz block-
ers are not inherently tied to input dependencies. Rather, these
blockers can be effectively addressed through the generation or
modification of fuzz drivers. However, it is worth noting that this
specific research area remains relatively unexplored. Through our
detailed classification of fuzz blockers, we aim to offer guidance
to researchers working in this domain, highlighting specific root
causes that can be leveraged to enhance techniques. Additionally,
we outline our plan to complete this study and submit it to a journal.

During the course of our study, we have identified a requirement
for the development of supportive tools aimed at enhancing code
comprehension. For instance, there is a need for tools facilitating
the construction of module dependency graphs, which can aid in
understanding the relationships between different code modules.
Additionally, we have observed the presence of incomplete call
graphs, resulting in incomplete outcomes for FuzzIntrospector.

8 ACKNOWLEDGEMENT

We thank Navid Emamdoost, David Korczynski, Jonathan Metzman,
and Addison Crump for sharing their great insights into FuzzIn-
trospector, OSS-Fuzz, FuzzBench, and DFSan. We also thank the
anonymous reviewers for their constructive and encouraging feed-
back. This research received funding from Google and it was also
partially funded by the Australian Government through an Aus-
tralian Research Council (ARC) Discovery Early Career Researcher
Award (DE230100473).

REFERENCES

[1] [n. d.]. American Fuzzy Lop. https://lcamtuf.coredump.cx/afl/
[2] [n. d.]. Black Duck Open Hub. https://www.openhub.net/
[3] [n. d.]. ClusterFuzz. https://google.github.io/clusterfuzz/
[4] [n. d.]. Data Flow Sanitizer. https://clang.llvm.org/docs/DataFlowSanitizer.html
[5] [n. d.]. Fuzz Introspector. https://github.com/ossf/fuzz-introspector
[6] [n. d.]. Honggfuzz. https://github.com/google/honggfuzz
[7] [n. d.]. Igraph The Network Analysis Package. https://igraph.org/
[8] [n. d.]. libFuzzer – a library for coverage-guided fuzz testing. https://github.

com/llvm-mirror/llvm/blob/master/docs/LibFuzzer.rst
[9] [n. d.]. libpng home page. http://www.libpng.org/pub/png/libpng.html
[10] [n. d.]. libpng manual. http://www.libpng.org/pub/png/libpng-manual.txt
[11] [n. d.]. libprotobuf-mutator. https://github.com/google/libprotobuf-mutator/
[12] [n. d.]. OpenSSL crytography and SSL/TLS toolket. https://www.openssl.org/
[13] [n. d.]. OSS-Fuzz: Continuous Fuzzing for Open Source Software. https://github.

com/google/oss-fuzz
[14] [n. d.]. Successful case studies of FuzzIntrospector. https://github.com/ossf/fuzz-

introspector/blob/main/doc/CaseStudies.md
[15] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,

Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAUTILUS: Fishing for Deep
Bugs with Grammars.. In NDSS.

[16] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi, and Thorsten Holz. 2020.
Ijon: Exploring deep state spaces via fuzzing. In 2020 IEEE Symposium on Security
and Privacy (SP). IEEE, 1597–1612.

[17] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence..
In NDSS, Vol. 19. 1–15.

[18] Jinsheng Ba, Marcel Böhme, Zahra Mirzamomen, and Abhik Roychoudhury. 2022.
Stateful greybox fuzzing. In 31st USENIX Security Symposium (USENIX Security
22). 3255–3272.

[19] Domagoj Babić, Stefan Bucur, Yaohui Chen, Franjo Ivančić, Tim King, Markus
Kusano, Caroline Lemieux, László Szekeres, and Wei Wang. 2019. Fudge: fuzz
driver generation at scale. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 975–985.

[20] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel, Ali Abbasi, Sergej Schu-
milo, SimonWörner, and ThorstenHolz. 2019. GRIMOIRE: Synthesizing Structure
while Fuzzing.. In USENIX Security Symposium, Vol. 19.

[21] Marcel Böhme, Cristian Cadar, and Abhik Roychoudhury. 2021. Fuzzing: Chal-
lenges and Reflections. IEEE Softw. 38, 3 (2021), 79–86.

[22] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSACConference
on Computer and Communications Security. 2329–2344.

[23] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
Based Greybox Fuzzing as Markov Chain. IEEE Transactions on Software Engi-
neering 45 (2016), 489–506.

[24] Gemma Catolino, Fabio Palomba, Andy Zaidman, and Filomena Ferrucci. 2019.
Not all bugs are the same: Understanding, characterizing, and classifying bug
types. Journal of Systems and Software 152 (2019), 165–181.

[25] Jaeseung Choi, Joonun Jang, Choongwoo Han, and Sang Kil Cha. 2019. Grey-box
concolic testing on binary code. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 736–747.

[26] Karine Even-Mendoza, Cristian Cadar, and Alastair F Donaldson. 2022.
CsmithEdge: more effective compiler testing by handling undefined behaviour
less conservatively. Empirical Software Engineering 27, 6 (2022), 129.

[27] Andrea Fioraldi, Daniele Cono D’Elia, and Davide Balzarotti. 2021. The Use of
Likely Invariants as Feedback for Fuzzers. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 2829–2846. https://www.usenix.org/
conference/usenixsecurity21/presentation/fioraldi

[28] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:
Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association.

[29] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, Dong Wu,
and Zuoning Chen. 2020. GREYONE: Data Flow Sensitive Fuzzing.. In USENIX
Security Symposium. 2577–2594.

[30] Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer,
and Antony L Hosking. 2021. Seed selection for successful fuzzing. In Proceed-
ings of the 30th ACM SIGSOFT International Symposium on Software Testing and
Analysis. 230–243.

[31] Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. 2018. Grammarinator: a
grammar-based open source fuzzer. In Proceedings of the 9th ACM SIGSOFT
international workshop on automating TEST case design, selection, and evaluation.
45–48.

[32] Kyriakos K Ispoglou, Daniel Austin, Vishwath Mohan, and Mathias Payer. 2020.
Fuzzgen: Automatic fuzzer generation. In Proceedings of the 29th USENIX Confer-
ence on Security Symposium. 2271–2287.

[33] Jie Liang, Yu Jiang, Yuanliang Chen, Mingzhe Wang, Chijin Zhou, and Jiaguang
Sun. 2018. Pafl: extend fuzzing optimizations of single mode to industrial parallel
mode. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
809–814.

[34] Jie Liang, Mingzhe Wang, Yuanliang Chen, Yu Jiang, and Renwei Zhang. 2018.
Fuzz testing in practice: Obstacles and solutions. In 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
562–566.

[35] Dongge Liu, Jonathan Metzman, Marcel Böhme, Oliver Chang, and Abhishek
Arya. 2023. SBFT Tool Competition 2023–Fuzzing Track. arXiv preprint
arXiv:2304.10070 (2023).

[36] Valentin JM Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J Schwartz, and Maverick Woo. 2019. The art, science, and engi-
neering of fuzzing: A survey. IEEE Transactions on Software Engineering 47, 11
(2019), 2312–2331.

[37] JonathanMetzman, László Szekeres, Laurent Simon, Read Sprabery, and Abhishek
Arya. 2021. Fuzzbench: an open fuzzer benchmarking platform and service. In
Proceedings of the 29th ACM joint meeting on European software engineering
conference and symposium on the foundations of software engineering. 1393–1403.

https://lcamtuf.coredump.cx/afl/
https://www.openhub.net/
https://google.github.io/clusterfuzz/
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://github.com/ossf/fuzz-introspector
https://github.com/google/honggfuzz
https://igraph.org/
https://github.com/llvm-mirror/llvm/blob/master/docs/LibFuzzer.rst
https://github.com/llvm-mirror/llvm/blob/master/docs/LibFuzzer.rst
http://www.libpng.org/pub/png/libpng.html
http://www.libpng.org/pub/png/libpng-manual.txt
https://github.com/google/libprotobuf-mutator/
https://www.openssl.org/
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/ossf/fuzz-introspector/blob/main/doc/CaseStudies.md
https://github.com/ossf/fuzz-introspector/blob/main/doc/CaseStudies.md
https://www.usenix.org/conference/usenixsecurity21/presentation/fioraldi
https://www.usenix.org/conference/usenixsecurity21/presentation/fioraldi


Beyond the Coverage Plateau: A Comprehensive Study of Fuzz Blockers (Registered Report) FUZZING ’23, July 17, 2023, Seattle, WA, USA

[38] Sebastian Österlund, Elia Geretto, Andrea Jemmett, Emre Güler, Philipp Görz,
Thorsten Holz, Cristiano Giuffrida, and Herbert Bos. 2021. Collabfuzz: A frame-
work for collaborative fuzzing. In Proceedings of the 14th European Workshop on
Systems Security. 1–7.

[39] Lianglu Pan, Shaanan Cohney, Toby Murray, and Van-Thuan Pham. 2023. De-
tecting Excessive Data Exposures in Web Server Responses with Metamorphic
Fuzzing. arXiv preprint arXiv:2301.09258 (2023).

[40] Jiwon Park, Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2021. Gener-
ative type-aware mutation for testing SMT solvers. Proceedings of the ACM on
Programming Languages 5, OOPSLA (2021), 1–19.

[41] Hui Peng and Mathias Payer. 2020. Usbfuzz: A framework for fuzzing USB drivers
by device emulation. In Proceedings of the 29th USENIX Conference on Security
Symposium. 2559–2575.

[42] Van-Thuan Pham, Manh-Dung Nguyen, Quang-Trung Ta, Toby Murray, and
Benjamin I.P. Rubinstein. 2021. Towards Systematic and Dynamic Task Allo-
cation for Collaborative Parallel Fuzzing. In Proceedings of the 36th IEEE/ACM
International Conference on Automated Software Engineering : NIER Track.

[43] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2020. AFLNet: a
greybox fuzzer for network protocols. In 2020 IEEE 13th International Conference
on Software Testing, Validation and Verification (ICST). IEEE, 460–465.

[44] Van-Thuan Pham, Marcel Böhme, Andrew E Santosa, Alexandru Răzvan Căci-
ulescu, and Abhik Roychoudhury. 2019. Smart greybox fuzzing. IEEE Transactions

on Software Engineering 47, 9 (2019), 1980–1997.
[45] Manuel Rigger and Zhendong Su. 2020. Testing Database Engines via Pivoted

Query Synthesis.. In OSDI, Vol. 20. 667–682.
[46] Yang Song and Oscar Chaparro. 2020. BEE: a tool for structuring and analyzing

bug reports. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
1551–1555.

[47] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-
aware greybox fuzzing. In 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering (ICSE). IEEE, 724–735.

[48] Qian Zhang, Jiyuan Wang, and Miryung Kim. 2021. Heterofuzz: Fuzz testing
to detect platform dependent divergence for heterogeneous applications. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 242–254.

[49] Zenong Zhang, George Klees, Eric Wang, Michael Hicks, and Shiyi Wei. 2023.
Fuzzing Configurations of Program Options. ACM Transactions on Software
Engineering and Methodology 32, 2 (2023), 1–21.

[50] Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee, and Dinghao
Wu. 2020. Squirrel: Testing database management systems with language validity
and coverage feedback. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security. 955–970.


	Abstract
	1 Introduction
	2 Background and Motivating Example
	2.1 Background of Coverage-Guided Greybox Fuzzing
	2.2 Introduction to Fuzz Introspector
	2.3 Motivating Example: A Challenging Fuzz Blocker in LibPNG

	3 Study Design
	3.1 Subject Selection
	3.2 Analysis Workflow

	4 Preliminary Results
	4.1 RQ1. Types of fuzz blockers
	4.2 RQ2. What makes them challenging?

	5 Plan for a complete study
	6 Related work
	7 Conclusion
	8 Acknowledgement
	References

