
AFLSmart++: Smarter Greybox Fuzzing
Van-Thuan Pham

School of Computing and Information Systems
The University of Melbourne

Melbourne, Australia
thuan.pham@unimelb.edu.au

Abstract—Model/grammar-based greybox fuzzing has gained
attention from both industry and academia due to its capability
of discovering bugs/vulnerabilities in programs taking highly-
structured inputs. AFLSmart is a specific example. It is a model-
based fuzzer that focuses on chunk-based file formats like PNG,
PDF and WAV. Its effectiveness is enabled by carefully-designed
high-level mutation operators—that work at data chunk levels—
and other heuristics such as its validity-based power schedule
and deferred cracking mechanism. In this work, we present an
extension of AFLSmart in which we explore some design options
to (i) support structure-aware low-level mutation operators—that
work at bit-byte-word-dword levels—and (ii) improve AFLS-
mart’s usability and applicability with the so-called composite
input model. The extension is called AFLSmart++ and it was
evaluated independently—along with 11 other fuzzers—on the
Google FuzzBench in a large-scale competition setup. The results
show that AFLSmart++ secures the 3rd place in terms of bug
finding but it ranks 11th based on its code coverage achievement.

Index Terms—fuzzing, structure-aware fuzzing, software secu-
rity, vulnerability discovery

I. INTRODUCTION

Fuzzing is an automated process of repeatedly generating
(random) inputs (i.e., test cases) and feeding them to the
system under test (SUT) to cover more lines of code and
discover bugs. For instance, to test the Adobe PDF Reader, a
fuzzer would take some sample PDF files, and modify/mutate
them to generate million new valid and corrupted files. While
feeding those files to the SUT, the fuzzer observes the program
behaviours. A program crash indicates a potential security bug
in the implementation and the bug-triggering input will be
kept for further analyses (e.g., program debugging and fixing).
Depending on whether it is aware of program structure, a
fuzzing tool can be classified as white-,grey-, or black-box
fuzzer. Grey-box fuzzing, as implemented in AFL [1] and
libFuzzer [2], is arguably the most popular approach.

Due to its scalability and effectiveness, (grey-box) fuzzing
has been applied to discover thousands of bugs/vulnerabili-
ties in large real-world systems including core libraries [3],
database management systems [4], web browsers [5], network
protocols [6]–[8], web APIs [9], [10]. The technique has also
received tremendous attention from the research community,
demonstrated by hundreds of papers published at top venues
in Computer Security and Software Engineering [11].

Researchers have been working on improvements to grey-
box fuzzing in different aspects [11], [12]. One of the active
research topics is to improve the quality and diversity of the

generated inputs/test cases and leveraging input structure/-
grammar is a promising direction (LibProtobuf-Mutator [13],
AFLSmart [14], Nautilus [15], Superion [16]).

AFLSmart [14] is a specific structure-aware grey-box fuzzer
that has a focus on programs taking chunk-based file formats
like PNG, PDF, WAV etc. It leverages a high-level structural
representation of the seed files to generate new files and uses
higher-order mutation operators that work on the virtual file
structure rather than on the bit level. This allows AFLSmart
to explore new input domains while maintaining file validity.
The fuzzer uses a validity-based power schedule so that it can
spend more time generating files that are more likely to pass
the parsing stage of the program, which can expose vulnerabil-
ities much deeper in the processing logic. Experimental results
show improvements of AFLSmart over its baseline AFL [1].

However, the current implementation of AFLSmart has two
limitations:

First, AFLSmart only leverages structural information to do
higher-order mutations at the data chunk level such as chunk
deletion and chunk splicing, leaving lower-level mutations
inside those chunks structure unaware. That is, like the original
AFL, AFLSmart still randomly chooses input offsets at which
bit-byte-word-dword mutations are applied. We argue that it
would be better if AFLSmart could select a data chunk first
and then choose the offsets/locations inside that chunk. The
benefits of doing that are twofold. First, it could help better
maintain the validity of the generated input. Second, more
fuzzing energy could be assigned to interesting data chunks
that have made better progress in terms of code coverage
achievement and bug finding.

Second, AFLSmart only supports fuzzing programs that
take one specific input model (e.g., it uses PNG input model
to fuzz the LibPNG library). It means that it could not
achieve the best performance on programs that handle more
than one input format, limiting its applicability. For instance,
the Bloaty binary profiler1 accepts ELF, Mach-O, PE/COFF,
and WebAssembly file formats. Moreover, the users must tell
AFLSmart which input model it should use even though the
information might not be documented in the library/program
specification, limiting its usability. To address this issue, we
design a new working mode called the composite mode in
which all/multiple input models can be bundled into a single
input model. When users specify such a composite input

1https://github.com/google/bloaty

model, AFLSmart will automatically scan through all the
included models and use the most suitable one.

We implemented the proposed solutions into an extension
of AFLSmart and called it AFLSmart++. We participated in
the SBFT’23 Fuzzing Competition in which AFLSmart++ was
independently evaluated along with other 11 fuzzers, includ-
ing new approaches and popular fuzzers such as AFL [1],
AFL++ [17], libFuzzer [2] and Honggfuzz [18]. 12 fuzzers
competed in two sets of benchmarks: a coverage-based bench-
mark of 40 target programs and a bug-based benchmark of 15
target programs.

The results show that AFLSmart++ secures the 3rd place
in terms of bug finding but it ranks 11th based on its code
coverage achievement. One main reason to explain why AFLS-
mart++ underperformed in the coverage-based benchmark is
that only 25% of the target programs in this benchmark
consume AFLSmart++’s supported input formats. In the bug-
based benchmark, AFLSmart++ seems to work very well on
subjects taking specific file formats like AVI but achieve on-
par or worse results on others. This looks consistent with the
results reported in the original AFLSmart paper and it opens
interesting questions for us to explore further as future work.

The remainder of this paper is structured as follows. In
Section II, we give an overview of AFLSmart. In Section III,
we describe the design and implementation of AFLSmart++.
We discuss fuzzing competition results in Section IV before
concluding the paper and sharing future research directions in
Section V.

II. OVERVIEW OF AFLSMART

Figure 1 depicts the workflow of AFLSmart. Like AFL [1],
it takes an instrumented binary of the program under test
(PUT) and a seed corpus (a.k.a input queue). In addition to
that, it also requires the user to specify an input model/spec-
ification describing the structure of the expected input. In
each fuzzing round, AFLSmart (i) selects a seed input from
the input queue, (ii) extracts the structural information and
the validity (i.e., percentage of successfully parsed data) of
that input using its File Cracker component, (iii) calculates
the fuzzing energy (i.e., number of fuzzs) for that seed, and
(iv) mutates the seed with both the original AFL’s mutation
operators (e.g., bit flippings) and its higher-order ones (e.g.,
chunk deletion, chunk splicing).

Since the second step (i.e., extracting structural information)
is expensive, it is done with a certain probability p that depends
on the current time to discover a new path. This is called the
deferred parsing/cracking mode.

AFLSmart leverages the collected structural information and
seed validity mainly to support the third and the fourth steps.
In the third step, it assigns more fuzzing energy to inputs that
are more valid with respect to the given input model.

In the fourth step (i.e., mutating the input), mutations are
done in a so-called stacking mode: several structural (high
level) and bit/byte-level (low level) mutation operators are
applied one after each other.

In this work, we focus on making the following changes:

• Updating the existing low-level mutation operators to
make them structure aware.

• Supporting a new working mode called composite mode
in which AFLSmart++ can take composite input models
that bundle several or even all available input models.
With this mode, the user could use one composite model
to fuzz test many programs without worrying about a
specific input format. This also includes changes to auto-
matically disable the smart (i.e., structure-aware) fuzzing
mode if none of the included models is applicable. This
newly introduced mode allows AFLSmart++ to partici-
pate in the SBFT’23 Fuzzing Competition where many
subject programs were kept secret and hence we did not
know their expected input formats.

III. AFLSMART++: DESIGN AND IMPLEMENTATION

A. Structure-aware Low-level Mutation Operators

From a high-level point of view, this feature allows
AFLSmart++ to control the fuzzing energy of different data
chunks—more progressive or rarely fuzzed data chunks should
be selected. This is motivated by our study of different file
formats and their processing libraries. We found that some
chunk types control more branches than others.

Once a data chunk is selected, low-level mutation
operators—that work at bit-byte-word-dword level—can be
applied inside the chunk boundary and hence reducing the
chance of breaking the input structure.

To implement this feature, we added a hashset of chunk
types to each parsed/cracked seed input and a global hashset
of all chunk types extracted from the seed corpus. Each
chunk type is associated with properties capturing the run-
time information such as their selected times, number of fuzzs,
and number of new paths found. Based on these dynamically
collected statistics, we calculate the scores for each chunk
type—both at the seed level and the corpus level—and use
that to decide which chunk type should be selected. In the
current implementation of AFLSmart++, its default chunk type
selection algorithm is called FAVOR: it prefers rare chunk
types or chunk types introducing more paths (i.e., progressive
chunks).

AFLSmart++ also supports two other selection algo-
rithms called RANDOM and ROUND ROBIN. In the RAN-
DOM mode, chunk types are randomly selected. In the
ROUND ROBIN mode, chunk types are given turns, one after
the other in a repeating sequence. As a result, all chunk types
have (almost) the same chance to get selected.

B. Composite Input Models

Listing 1 shows an example of a composite input model in
which many input models can be combined (e.g., models of
ELF, PNG, WAV, PDF, and AVI file formats). When such a
composite model is given to AFLSmart++, its File Cracker
component will try to select at most one input model that
matches the given seed input. If there is no matching input
model, the seed is considered invalid (with a validity of 0%).
The user can still use individual input models—like what

seed

AFLSmart
Fuzzer

File
Cracker

root

chunk1 chunk2

...

Structure
Collector

Validity (%)

f1 f2 fn...

Seed Selector

AFLSmart
Energy Calculator

Input Queue

 specification

Fig. 1. The main workflow of AFLSmart (the figure is copied from [14]). AFLSmart++ implements structure-aware bit-byte-word-dword mutations and
supports composite input models/specifications to improve its usability and applicability.

have been supported by AFLSmart—to fuzz test their targets.
For instance, one can fuzz test the LibPNG library by either
using the PNG input model (as specified in png.xml) or using
this sample composite model. However, using a composite
model could allow them to test programs that take several
file formats (e.g., Bloaty) or programs with no public input
format information.

...
<Include ns="elf" src="elf.xml" />
<Include ns="png" src="png.xml" />
<Include ns="wav" src="wav.xml" />
<Include ns="pdf" src="pdf.xml" />
<Include ns="avi" src="avi.xml" />
<Include ns="mp3" src="mp3.xml" />
<Include ns="mp4" src="mp4.xml" />
...

<DataModel name="Composite">
<Choice name="AllFormats" maxOccurs="1">

<Block name="Elf" ref="elf:ELF"/>
<Block name="Png" ref="png:PNG"/>
<Block name="Wav" ref="wav:WAV"/>
<Block name="Pdf" ref="pdf:PDF"/>
<Block name="Avi" ref="avi:AVI"/>
<Block name="Mp3" ref="mp3:MP3"/>
<Block name="Mp4" ref="mp4:MP4"/>
...

</Choice>
</DataModel>
...

Listing 1. A sample composite input model

This composite mode introduces a technical issue when the
program under test does not take any input format included
in the model. The input parsing/cracking process is slow and
it could significantly impact the efficiency of the fuzzer if
(almost) no input in the corpus adheres to specified formats. To
address this issue, we design a simple yet effective algorithm
to automatically detect the situation and disable the smart
fuzzing mode, letting it run like normal AFL. Basically, it

collects the validity information of a configurable number of
parsed inputs and if none of them passes a validity threshold,
it indicates that the smart mode is likely not useful.

IV. EVALUATION ON FUZZBENCH

Along with other 11 fuzzers, AFLSmart++ was evaluated on
two sets of benchmarks on the Google FuzzBench platform: a
coverage-based benchmark of 40 target programs and a bug-
based benchmark of 15 target programs. These program were
selected from the OSS-Fuzz project [3] and the Google Fuzzer
Test Suite [19].

AFLSmart++ was run in its newly introduced composite
mode and the FAVOR chunk selection algorithm (i.e., rare or
progressive chunk types are preferable). The in-used compos-
ite input model supports 17 input formats: EFL, MACHO,
PNG, JPEG2000, WAV, PDF, AVI, MP3, MP4, GIF, MIDI,
OGG, WEBP, XTF, ZIP, PCAP, ICC. These cover media
files, binary files, color profiles, compression formats, and font
types.

In terms of bug finding, AFLSmart++ secures the 3rd place.
However, it ranks 11th in the code coverage benchmark.

There are several reasons that could explain why AFLS-
mart++ performed pretty well in the bug-based benchmark
and underperformed in the coverage-based benchmark. First,
in the bug-based benchmark 47% (7/15) of target programs
take input formats supported by the chosen input model.
However, the figure for the coverage-based benchmark is much
lower, just 25% (10/40). Second, AFLSmart++ is still based
on the original AFL which does not support recent advanced
features like Redqueen [20] and cmplog modes in AFL++ and
these features seem to work very well in the coverage-based
benchmark.

We also observed that in the bug-based benchmark, AFLS-
mart++ performed much better in some specific file formats
like AVI. It is consistent with the results reported in the origi-
nal AFLSmart paper. However, it poses an interesting question
that is worth further study. Specifically, we would want to see
if there are unique properties of the formats making them more
suitable for approaches like AFLSmart/AFLSmart++.

V. CONCLUSION AND FUTURE WORK

In this paper, we present AFLSmart++ which is an ex-
tension of the structure-aware greybox fuzzer AFLSmart.
AFLSmart++ improves AFLSmart in two main aspects. First,
it makes low-level mutation operators structure aware. Second,
it introduces the so-called composite mode that allows users to
fuzz test more types of programs with less effort and a simpler
configuration. Experimental results on large-scale benchmarks
show that AFLSmart++ is effective in bug finding even though
it did not perform well in terms of code coverage achievement.

In our future work, we plan to explore several design
options. First and foremost, we will port AFLSmart++ to
AFL++ to leverage its advanced and orthogonal features.
Second, we will implement and evaluate more systematic data
chunk selection algorithms. Specifically, we plan to experiment
with multi-armed bandit algorithms [21]. Third, we would
consider replacing or simplifying the Peach-based File Cracker
component, which is the large source of run-time overhead.
Last but not the least, we will add more input models for
other input formats.

VI. ACKNOWLEDGEMENT

We thank all the organizers of the SBFT’23 Workshop for
their hard work to make the fuzzing competition happen. We
also thank Marc Van Hauser Heuse, who is a core developer
of AFL++, for his advice on porting AFLSmart++ to AFL++.
This work was partially supported by the Amazon AWS Cloud
Credit for Research program.

REFERENCES

[1] “American fuzzy lop.” [Online]. Available:
https://lcamtuf.coredump.cx/afl/

[2] “libfuzzer – a library for coverage-guided
fuzz testing.” [Online]. Available: https://github.com/llvm-
mirror/llvm/blob/master/docs/LibFuzzer.rst

[3] “Oss-fuzz: Continuous fuzzing for open source software.” [Online].
Available: https://github.com/google/oss-fuzz

[4] R. Zhong, Y. Chen, H. Hu, H. Zhang, W. Lee, and D. Wu, “Squirrel:
Testing database management systems with language validity and cov-
erage feedback,” in Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, 2020, pp. 955–970.

[5] “Domato: A dom fuzzer.” [Online]. Available:
https://github.com/googleprojectzero/domato

[6] V.-T. Pham, M. Böhme, and A. Roychoudhury, “Aflnet: a greybox fuzzer
for network protocols,” in 2020 IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST). IEEE, 2020, pp.
460–465.

[7] J. Ba, M. Böhme, Z. Mirzamomen, and A. Roychoudhury, “Stateful
greybox fuzzing,” in 31st USENIX Security Symposium (USENIX Secu-
rity 22), 2022, pp. 3255–3272.

[8] S. Schumilo, C. Aschermann, A. Jemmett, A. Abbasi, and T. Holz,
“Nyx-net: network fuzzing with incremental snapshots,” in Proceedings
of the Seventeenth European Conference on Computer Systems, 2022,
pp. 166–180.

[9] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Restler: Stateful rest api
fuzzing,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 748–758.

[10] L. Pan, S. Cohney, T. Murray, and V.-T. Pham, “Detecting excessive data
exposures in web server responses with metamorphic fuzzing,” arXiv
preprint arXiv:2301.09258, 2023.

[11] V. J. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and
M. Woo, “The art, science, and engineering of fuzzing: A survey,” IEEE
Transactions on Software Engineering, vol. 47, no. 11, pp. 2312–2331,
2019.

[12] M. Böhme, C. Cadar, and A. Roychoudhury, “Fuzzing: Challenges and
reflections.” IEEE Softw., vol. 38, no. 3, pp. 79–86, 2021.

[13] “libprotobuf-mutator.” [Online]. Available:
https://github.com/google/libprotobuf-mutator/

[14] V.-T. Pham, M. Böhme, A. E. Santosa, A. R. Căciulescu, and A. Roy-
choudhury, “Smart greybox fuzzing,” IEEE Transactions on Software
Engineering, vol. 47, no. 9, pp. 1980–1997, 2019.

[15] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and
D. Teuchert, “Nautilus: Fishing for deep bugs with grammars.” in NDSS,
2019.

[16] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-aware
greybox fuzzing,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 724–735.

[17] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining
incremental steps of fuzzing research,” in 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association, Aug. 2020.

[18] “Honggfuzz.” [Online]. Available: https://github.com/google/honggfuzz
[19] “Fuzzer test suite.” [Online]. Available:

https://github.com/google/fuzzer-test-suite
[20] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,

“Redqueen: Fuzzing with input-to-state correspondence.” in NDSS,
vol. 19, 2019, pp. 1–15.

[21] J. Vermorel and M. Mohri, “Multi-armed bandit algorithms and em-
pirical evaluation,” in Machine Learning: ECML 2005: 16th European
Conference on Machine Learning, Porto, Portugal, October 3-7, 2005.
Proceedings 16. Springer, 2005, pp. 437–448.

